Statistical Designs for Early Phase Oncology Drug Development in the Era of Dose Optimizing for Targeted Therapeutics

Yuan Ji, PhD

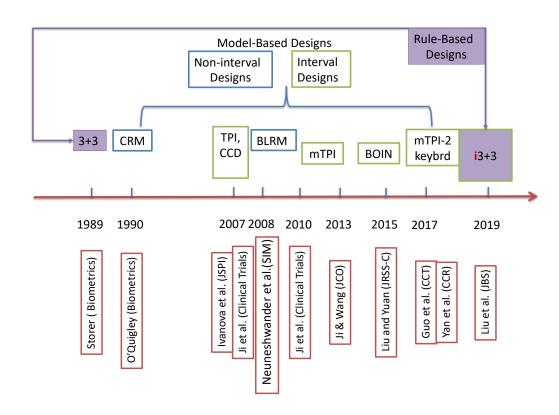
Professor of Biostatistics

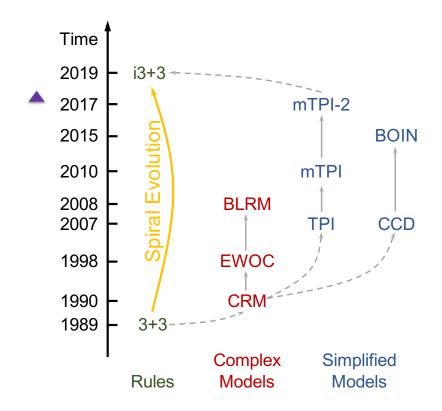
The University of Chicago

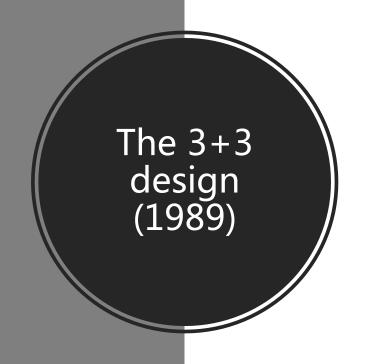
Conflict of Interests

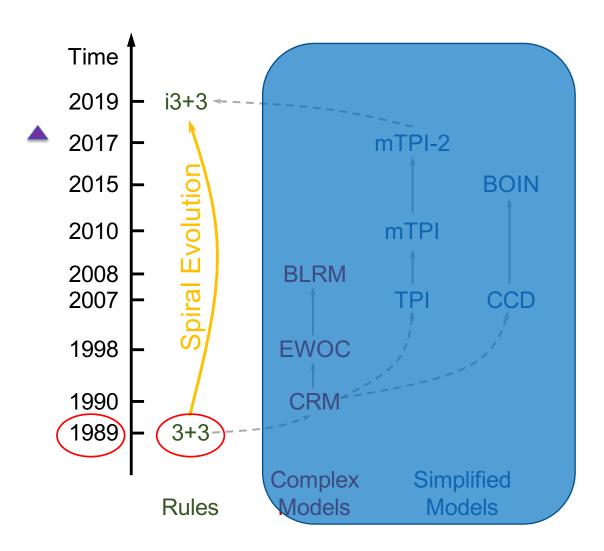
- U-Design is a commercial platform developed by Laiya Consulting, Inc., now part of Cytel Inc., called "East Bayes"
- Yuan Ji is a co-founder of Bayesoft
 - Also, an IDMC member for Astellas and BI
 - Executive Advisor for Cytel
 - Research contracts with Pfizer

All models are wrong, but some are useful.

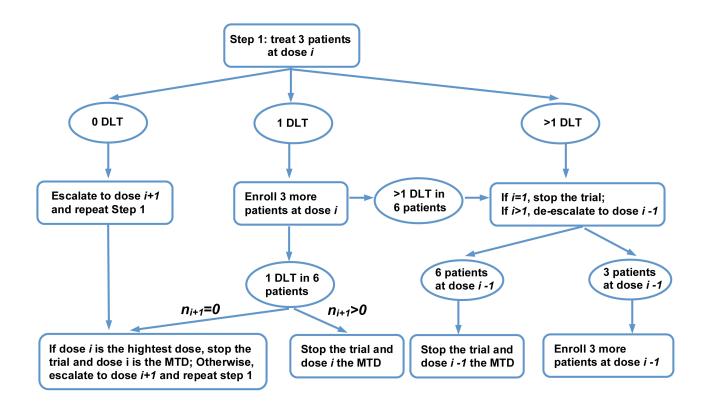

-- George Box




(1919-2013)


Dose-finding designs over last 30 years

• So many designs are available now. Which one to use?



The 3+3 design (1989)

- Rule based
- No statistical models
 - Easy
 - Transparent
 - Societal acceptance
- Naïve/Rigid
 - <= 6 patients per dose
 - MTD wide range (1/6-1/3)
 - Performance depends on the # of doses
 - Large variabilities in MTD identification
 - Often little data supporting RP2D choices

Numerous papers have shown 3+3 is inferior in many ways

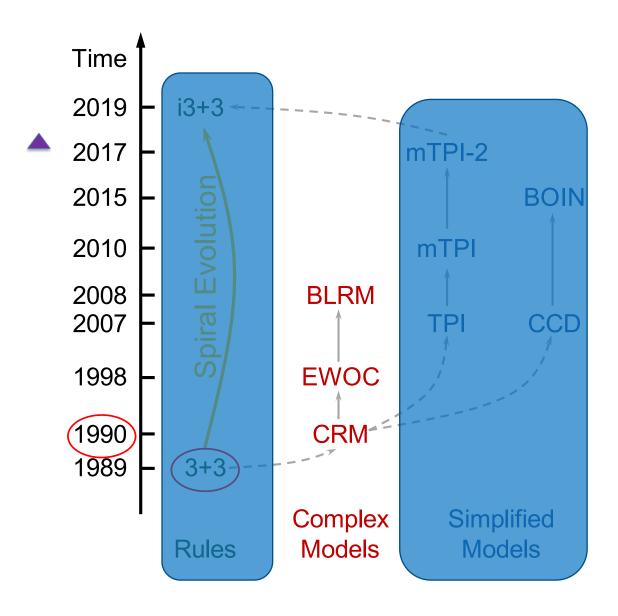
J Clin Oncol. 2013 May 10;31(14):1785-91. doi: 10.1200/JCO.2012.45.7903. Epub 2013 Apr 8.

Modified toxicity probability interval design: a safer and more reliable method than the 3 + 3 design for practical phase I trials

Yuan Ji 1, Sue-Jane Wang

Affiliations + expand

PMID: 23569307 PMCID: PMC3641699 DOI: 10.1200/JC0.2012.45.7903


Free PMC article

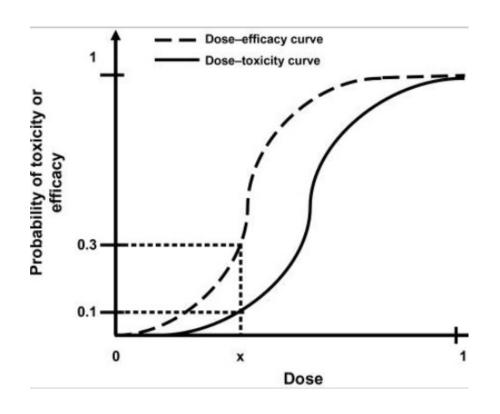
CCR FOCU S2016

Rendering the 3 + 3 Design to Rest: More Efficient Approaches to Oncology Dose-Finding Trials in the Era of Targeted Therapy

Lei Nie¹, Eric H. Rubin², Nitin Mehrotra³, José Pinheiro⁴, Laura L. Fernandes¹, Amit Roy⁵, Stuart Bailey⁶, and Dinesh P. de Alwis⁷

The CRM designs (1990-2007)

The CRM & BLRM designs


- MTD: a target rate p_T
- BLRM: probability intervals
- Dose-response curve
- $p(x) = p_0(x)^{\exp(\alpha)}$ or $\operatorname{logit}^{(-1)}(x\beta)$
 - $\alpha \sim N(0, 1.34)$; or $\beta \sim prior$
 - $p_0(x)$ is the "skeleton"
 - Next dose = $\operatorname{argmin}|\hat{p}(x) p_T|$ or based on posterior prob. of intervals
- Operation
 - Need a statistical expert for inference and decision making
 - Too complex for the clinical team
 - SMC may override dosing decision
 - Ad-hoc rules for over-dose control

Model based

- Account for variability
- Dose response curves
- Flexible and powerful

Lots of modifications

- Over-dose control
- Bayesian models
- # of parameters
- Black box, complex, costly

9

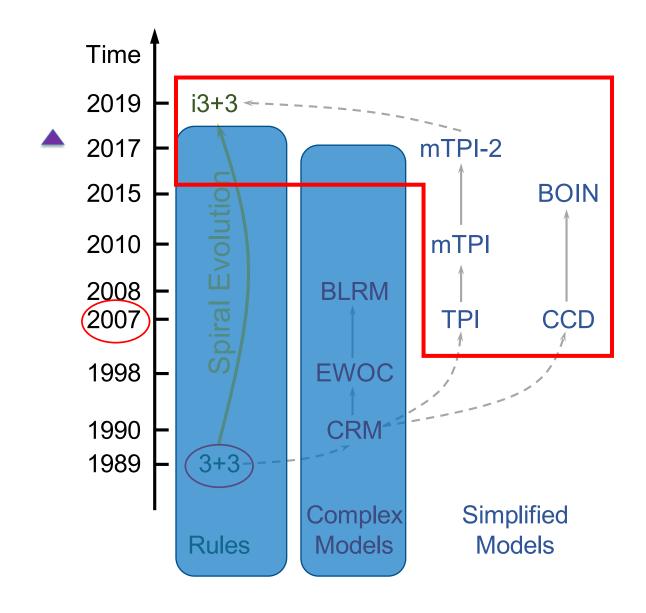
TECHNICAL ADVANCE

Open Access

How to design a dose-finding study using the continual reassessment method

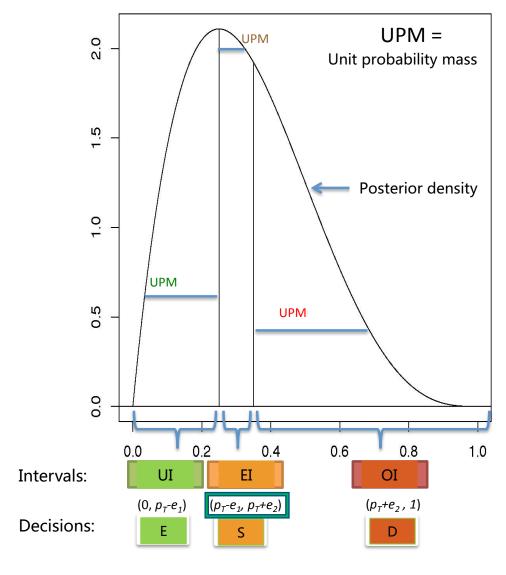
Graham M. Wheeler^{1*}, Adrian P. Mander², Alun Bedding³, Kristian Brock⁴, Victoria Cornelius⁵, Andrew P. Grieve⁶, Thomas Jaki⁷, Sharon B. Love^{8,9}, Lang'o Odondi⁸, Christopher J. Weir¹⁰, Christina Yap⁴ and Simon J. Bond^{2,11}

Hundreds of papers on CRM over the past 3 decades – very popular as a research topic


- First paper, O'Quigley, Fisher, Pepe (1990); solid statistical principle: Model-based inference; borrow information across doses
- Wheeler et al. (2019) provide a comprehensive tutorial summarizing the decades of research on CRM.
- CRM is not easy to implement in 2019 still needing a tutorial

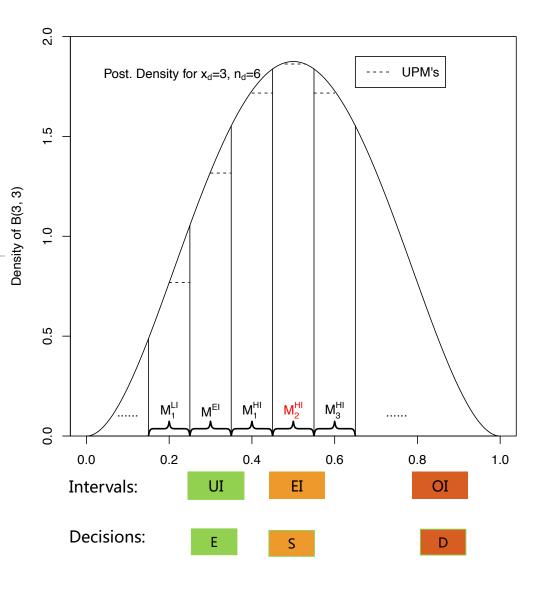
CRM-Software (Wheeler et al., 2019)

Name	Host/Institution	Software/Stand- alone	Free/Commercial	Rule- based/Model- based	Description
bcrm [<u>88</u>]	CRAN	R	Free	Both	Design, run, and simulate trials using the CRM and 3 + 3 design
dfcrm [18]	CRAN	R	Free	Model-based	Design, run, and simulate trials using the CRM and Time-to-event CRM
crmPack [89]	CRAN	R	Free	Both	Design, run, and simulate trials using the CRM (includes other model-based designs, joint toxicity-efficacy modelling)
crm [<u>90</u>]	IDEAS (RePEc)	Stata	Free	Model-based	Run a single trial using the CRM
MoDEsT [91]	Lancaster University	Stand-alone (online)	Free	Model-based	Design, run, and simulate trials using the CRM
Bayesian CRM for phase I trials [92]	University of Virginia	Stand-alone (online)	Free	Model-based	Design, run, and simulate trials using the CRM
AplusB [<u>93</u>]	MRC Biostatistics Unit, University of Cambridge	Stand-alone (online)	Free	Rule-based	Compute exact operating characteristics for 3 + 3 and other rule-based designs
Center for Quantitative Sciences Calculator [94]	Vanderbilt University	Stand-alone (online)	Free	Both	Simulate trials using the CRM (uses bcrm [88] and dfcrm [18]) and other designs (rule-based/model-based)
CRMSimulator [95]	MD Anderson Cancer Center, University of Texas	Stand-alone	Free	Model-based	Simulate trials using the CRM
FACTS [96]	Berry Consultants	Stand-alone	Commercial	Both	Design program for phase I trials using the CRM, plus fixed and adaptive designs for phase II trials
ADDPLAN [97]	ICON PLC	Stand-alone	Commercial	Both	Design, simulate, and analyse trials using the CRM (includes methods for dose-response modelling)
U-Design	Laiya Consulting	Stand-alone	Commercial	Both	Phase I, II, II/III adaptive designs, master protocols sample size cal; etc.
EAST Bayes	Cytel	Stand-alone	Commercial	Both	Phase I adaptive designs,


The intervalbased designs (2007-now)

- Model-based designs
 - Account for variability
 - Dose response curves
 - Flexible and powerful
- Simple & Transparent
 - Over-dose control
 - Simple Bayesian models
 - Decision tables

The mTPI (mTPI-2) designs: Specify an equivalence interval


- MTD target is set at p_T , say 0.25.
- An equivalence interval $(p_T \epsilon_1, p_T + \epsilon_2)$, where $(p_T \epsilon_1)$ and $(p_T + \epsilon_2)$ are the lowest and highest toxicity rates for a dose to be considered as the MTD.
- All the decisions for dose finding can be pretabulated (Ji et al., 2007, 2010)

UPM = Marginal posterior probability of interval (Guo et al., 2017)

The mTPI (mTPI-2) designs: Equal-lengthed subintervals

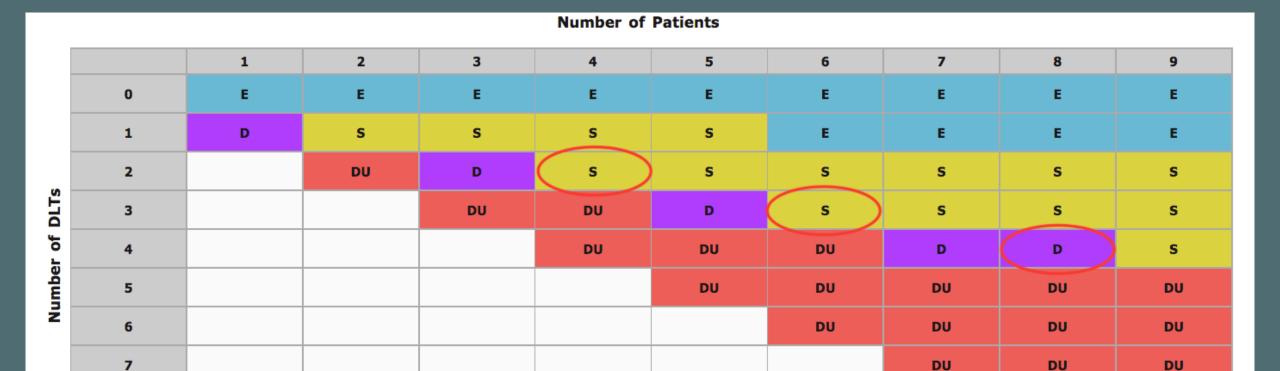
- MTD target is set at p_T , say 0.25.
- Due to Ockham's razor (Guo et al., 2017), mTPI-2 further divides the three intervals into subintervals with equal length.
- mTPI-2 (Guo et al, 2017) and keyboard (Yan et al, 2017) are identical.

Sample size = 9; Target toxicity probability = 30%; epsilon 1 = 0.05; epsilon 2 = 0.05;

		1	2	3	4	5	6	7	8	9
	0	E	E	E	E	E	E	E	E	E
	1	D	s	S	s	s	E	E	E	E
	2		DU	D	s	s	s	s	s	S
DLTs	3			DU	DU	D	s	s	s	S
oę	4				DU	DU	DU	D	D	S
Number	5					DU	DU	DU	DU	DU
ž	6						DU	DU	DU	DU
	7							DU	DU	DU
	8								DU	DU
	9									DU

E: Escalate to the next higher dose; **S**: Stay at the same dose; **D**: De-escalate to the previous lower dose; **DU**: De-escalate to the previous lower dose and the current dose will never be used again in the trial;

An mTPI decision table: Generated based on models Presented as rules

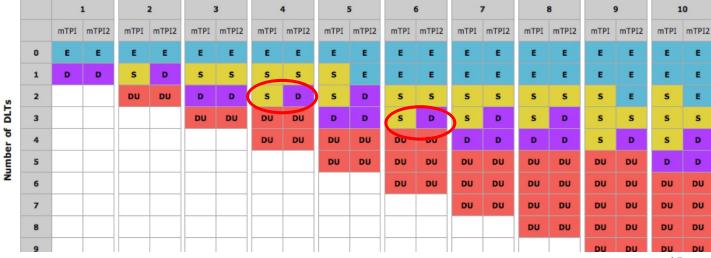

Contribution to the society: Interval-based designs (2007-2013) & (2015-2020)

Number of Patients Е E Е D S S S S Е S S DU D S S DU D S S S D DU DU DU D DU DU DU DU DU DU DU DU

- For the first time bridged simple rules with model-based inference
- Effectively challenged the 3+3 design as the only clinically popular method
- Widely used in practical trials (publications in Lancet Oncology, JAMA Oncology, etc)
- CCD/BOIN/i3+3 further simplify the interval ideas

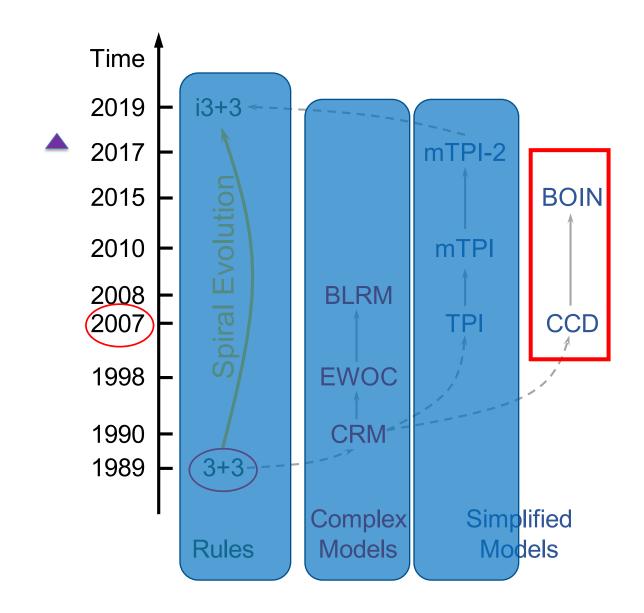
to the next higher dose; **S**: Stay at the same dose; **D**: De-escalate to the previous lower dose; **DU**: De-escalate to the and the current dose will never be used again in the trial;

A criticism of the mTPI design table


When 3/6 patients have DLT, how can we "S", stay at the current dose?

Note: 2/4 – S; but 4/8 – D!

The mTPI decisions are statistically optimal, but


- Guo et al. (2017) show that the decisions in mTPI minimizes the posterior expected 0-1 loss it is statistically optimal!
- So how can Stay at 3/6 be an optimal decision?
 - 3/6 Stay when $p_T = 0.3$ and EI=(0.25, 0.35). Is it wrong?
 - 4/8 De-escalate based on the same table
 - Statistical variability is the key; 6 patients have larger variability than 8 patients;
 - Alternatives:
 - Change 0-1 loss to a loss based on distance from p_T
 - Ockham's razor: Guo et al. (2017) the mTPI-2 design
 - mTPI-2 blunts Ockham's razor and makes decisions more "nimble"

Number of Patients

The interval designs (2015-now)

- Model-assisted designs
 - Statistical inference using models (simple models)
 - Inference based on point estimate
 - Presentation of the decisions as rules

What is the BOIN design and why is it popular?

- At a dose, \mathbf{n} (e.g., =3, 6, 9) patients are treated, \mathbf{y} (=0, 1, 2,...) patients DLT
- Compare $\frac{y}{x}$ with intervals
 - If $\frac{y^n}{n} \le p_T e_1^*$, Escalate
 - If $p_T e_1^* < \frac{y}{n} < p_T + e_2^*$, Stay
 - If $\frac{y}{n} \ge p_T + \frac{e_2^*}{n}$, De-escalate
- The above rules **originally proposed by the CCD design** (Ivanova et al., 2007)
- BOIN applies the same safety rules as in mTPI

Examples: $p_T = 0.3$, interval = (0.25, 0.35)

0/3, Escalate; 1/3 Stay, 2/3, 3/3 De-escalate

0/6, 1/6, Escalate; 2/6 Stay, 3/6, 4/6, 5/6, 6/6 De-escalate

BOIN is very simple and easy to use. However, What are the e_1^* and e_2^* and how to decide them?

Quick answer: elicit from physicians.

BOIN: "O" stands for "optimal", but

 e_1^* and e_2^* are based on an optimization procedure.

Physicians provide an interval

$$(p_T - \epsilon_1, p_T + \epsilon_2)$$

• BOIN changes it to "optimal"

$$(p_T - e_1^*, p_T + e_2^*)$$

How does the optimization work in BOIN? (Duan et al., 2022)

A decision framework requires a reasonable model

```
Data: y; Model: f(y|\theta), Prior: \pi(\theta), Posterior: p(\theta|y)

Action: a \in \{D, S, E\}; Loss: l(a, \theta), Decision rule: R(y) \to a

Optional decision rule: R^*(y) is optimal if it provides the smallest loss (or expected loss); for example, Bayes' rule R^*(y) = \arg\max_a \int l(a, \theta) p(\theta|y) d\theta

mTPI/mTPI-2/keyboard are based on Bayes' rules for a model f(y|\theta) = Bin(n, \theta), \pi(\theta|interval) = beta(1,1)Ind(interval), \pi(interval) = unf and 0-1 loss
```

BOIN decisions correspond to a Bayes rule with a prior distribution assumes three point masses

```
Model: f(y|\theta) = Bin(n,\theta); Prior: \pi(\theta) = \frac{1}{3} if \theta \in \{p_T - e_1^*, p_T, p_T + e_2^*\}

Loss: 0-1 loss Ind(a = D, \theta \neq \phi_2) + Ind(a = S, \theta \neq p_T) + Ind(a = E, \theta \neq \phi_1)

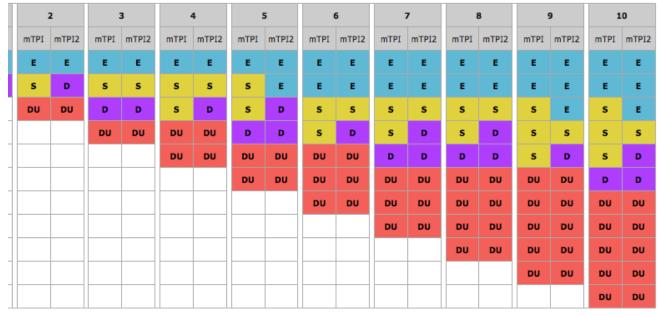
Optimal decision: Bayes' rule

if \frac{y}{n} \leq p_T - e_1^*, E(scalate)

if p_T - e_1^* < \frac{y}{n} < p_T + e_2^*, S(tay)

if \frac{y}{n} > p_T + e_2^*, D(e-escalate)

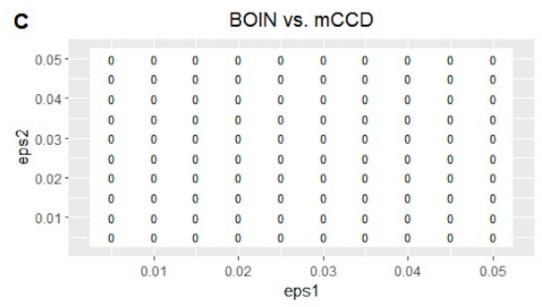
Note: The e_1^* and e_2^* can be derived based on optimization using Bayes' rule.
```


FDA fit-for-purpose designation for BOIN

- FFP-BOIN: FDA FFP-designated BOIN; O-BOIN: the original BOIN design in Liu and Ying (2015)
- The FFP-BOIN design is different from the originally published O-BOIN design. The following table provides a comparison between the two designs.
- In addition, the FFP-BOIN design only uses the "non-informative prior" where the prior probabilities of the three point hypotheses in O-BOIN are equal, i.e., $\pi_{0j} = \pi_{1j} = \pi_{2j} = 1/3$. The O-BOIN design is not restricted to this prior. The FDA review also pointed some issues with using priors outside the conditions on π 's. See https://www.fda.gov/media/155364/download for more details.

	O-BOIN	FFP-BOIN
Bounds of λ_{1j} and λ_{2j}	$0 \le \lambda_{1j}(n_j, \phi) < \lambda_{2j}(n_j, \phi) \le 1$	$\lambda_{1j}(n_j,\phi) \leq \lambda_{2j}(n_j,\phi)$
De-escalate Decision	if $\hat{p}_j \geq \lambda_{2j}(n_j, \phi)$	if $\hat{p}_j > \lambda_{2j}(n_j, \phi)$
Retain Decision	if $\lambda_{1j}(n_j,\phi) < \hat{p}_j < \lambda_{2j}(n_j,\phi)$	if $\lambda_{1j}(n_j,\phi) < \hat{p}_j \le \lambda_{2j}(n_j,\phi)$

One may not need simulations to evaluate interval-based designs!


next higher dose; S: Stay at the same dose; D: De-escalate to the previous lower dose; DU: De-escalate to the se and the current dose will never be used again in the trial;

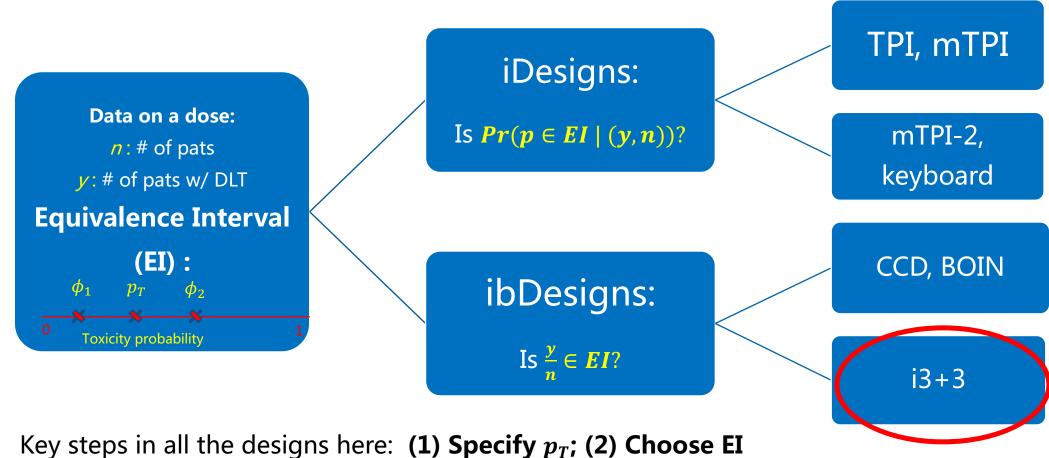
- Interval-based designs contain three key components:
 - Safety rules that stop trials or exclude doses if $\Pr(p_d \text{ or } p_1 > p_T | data) > 0.95$
 - MTD selection procedure: for example, $\operatorname{argmin}[\hat{p}(x)]$ p_T where $\hat{p}(x)$ is isotonic transformed posterior mean
 - The pretabulated decision tables

The mTPI, mTPI-2/keyboard, BOIN, i3+3 have identical i and ii. The only differences are in iii. $_{23}$

Without running simulations one can already evaluate interval-based designs - BOIN and CCD

- BOIN and mCCD (mCCD = CCD + safety rules)
 have the same i & ii; and for iii mCCD does not optimize the EI
- The decisions b/w BOIN and mCCD are identical (for <=51 ss)

Differences = 0 out of a total 1,326 decisions; $p_T = 0.3$


Simulation results can be misleading

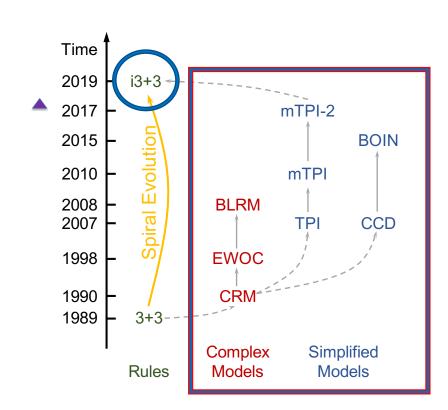
- For interval-based designs; just look for the three components:
 - i. Safety rules
 - ii. MTD selection
 - iii. Decision tables

• Simulation results for interval designs based on repeated computergenerated clinical trials are completed decided by i - iii.

- Read review papers with caution
 - No single design can dominate another design in ALL scenarios

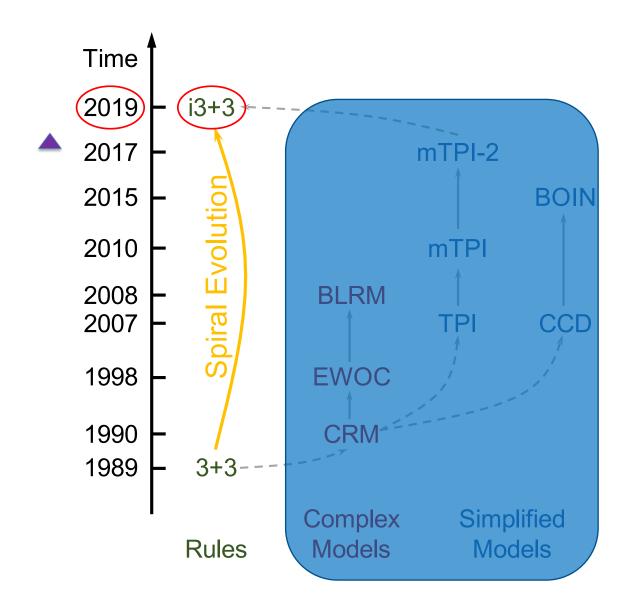
The interval designs (iDesigns) and the interval-boundary designs (ibDesigns)

- All the designs here use the same isotonic regression to choose final MTD
- Except CCD, all the designs have the same safety rules


Statistical modeling is about variabilities: 3/6=0.5; 30/60=0.5, 3000/6000=0.5...

- The hallmark of statistics is variability
 - If no variability, no need for statistics!
 - But the rules below ignore variability!

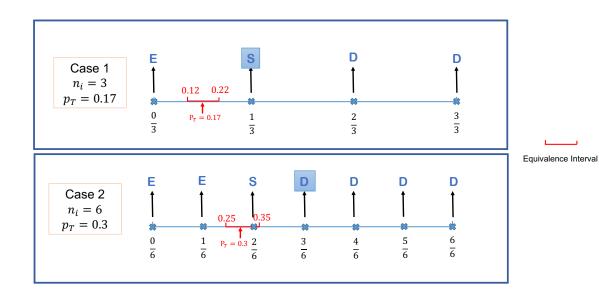
If
$$\frac{y}{n} \le p_T - \lambda_1$$
, Escalate;
If $p_T - \lambda_1 < \frac{y}{n} < p_T + \lambda_2$, Stay;
If $\frac{y}{n} \ge p_T + \lambda_2$, De-escalate


- Remember this picture?
 - We spent 30 years resorting to statistical models
 - Because models account for variability
 - But if in the end the decision rules do not need to account for variability; why bothering with models?

The last chapter: back to rule-based designs!

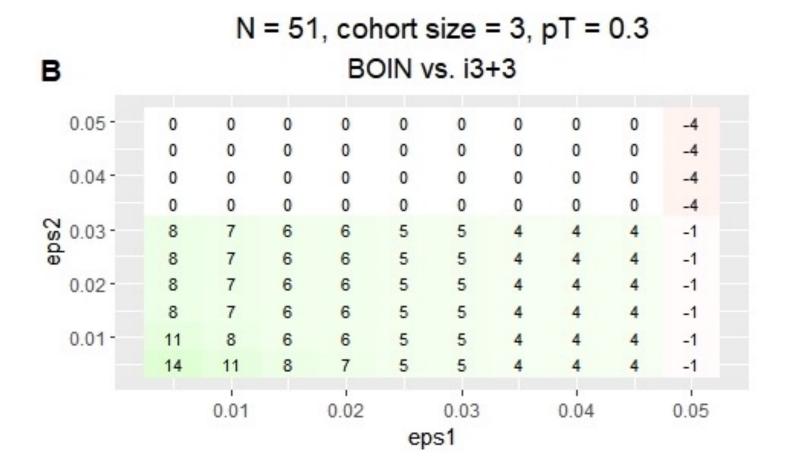
The i3+3 design (2019)

- Rule based (smart rules)
- No statistical model
 - Easy
 - Transparent
 - Social acceptance
- Flexible and powerful


The i3+3 design (Liu, Wang, Ji, 2020, JBS)

Examples:
$$p_T = 0.3$$
, EI = (0.25, 0.33)
 $i3+3$: $mTPI-2/BOIN$:
 $0/3 - \text{Escalate}$; $0/3 - \text{Escalate}$;
 $1/3 - \text{Stay}$; $1/3 - \text{De-escalate}$;
 $2,3/3 - \text{De-escalate}$ $2,3/3 - \text{De-escalate}$

When $\frac{1}{n} < e_1 + e_2$, i3+3, CCD, and BOIN have identical decisions as long as they use the same EI


The i3+3 decision rules (two examples)

• Comparison to mTPI and BOIN when 1/n is large

	: dose: d led: $n=6$	Target probability: $p_T=0.3$ EI: $[p_T-\epsilon_1,p_T+\epsilon_2]=[0.25,0.35]$			
No. DLTs: x	Next dose level				
No. DLIS. X	i3+3	mTPI	BOIN		
0	d+1	d+1	d+1		
1	d + 1	d+1	d+1		
2	d	d	d		
3	<i>d</i> − 1	d	<i>d</i> − 1		
4	<i>d</i> − 1	d - 1	d-1		
5	<i>d</i> − 1	d-1	d-1		
6	d - 1	d-1	d-1		

	dose: d led: $n = 3$	Target probability: $p_T=0.17$ EI: $[p_T-\epsilon_1,p_T+\epsilon_2]=[0.12,0.22]$			
No. DLTs: x	Next dose level				
NO. DLIS. X	i3+3	mTPI	BOIN		
0	d + 1	d + 1	d + 1		
1	d	d	<i>d</i> − 1		
2	<i>d</i> − 1	<i>d</i> − 1	<i>d</i> − 1		
3	d - 1	d-1	d-1		

Differences in about 1% out of a total 1,326 decisions

So how does i3+3 perform?

- For interval-based designs; just look for the three components:
 - Safety rules
 - MTD selection
 - Decision tables
- With only tiny differences the two designs perform comparably

How to evaluate the simulation results? Lots of summary statistics; can be difficult to compare

Scenario 1

$p_T = 0.25$, $n_{sim} = 1000$		Selection Prob.		Average # of Patients Treated (s.d.)		Average # of Toxicities (s.d.)	
Dose Level	True Tox Prob.	mTPI-2	mCCD	mTPI-2	mCCD	mTPI-2	mCCD
1	0.13	0.375	0.234	12.072 (8.092)	11.781 (7.821)	1.605 (1.961)	1.575 (1.929)
2	0.25	0.491	0.555	11.646 (5.862)	11.634 (5.625)	2.88 (1.912)	2.842 (1.9)
3	0.38	0.112	0.191	5.016 (5.313)	5.28 (5.231)	1.908 (1.987)	2.025 (1.985)
4	0.5	0.008	0.012	1.038 (2.449)	1.077 (2.481)	0.528 (1.228)	0.549 (1.245)
5	0.63	0	0.001	0.102 (0.649)	0.102 (0.649)	0.075 (0.479)	0.075 (0.479)

0.491 0.12 0.014 0.388 (0.195)	0.555 0.204 0.007
0.014	0.007
0.388 (0.195)	
	0.388 (0.187)
0.205 (0.234)	0.215 (0.231)
0.234	0.237
0.007	0.007
0	0
0.993	0.993
29.874 (1.622)	29.874 (1.622)
	0.993

^{*} The row with background color indicates the TRUE MTD

Simulated Dose Escalation

^{**} For further details concerning Trial Stopping Rule, please refer to section 1.2.2 in the User Manual.

The J-Score is a weighted average of MTD selection and patient allocation

$$Utility_{iA} = R_1 \times \%SelAtMTD_i - p_{l_1} \times \%SelBelowMTD_i - p_{h_1} \times \%SelAboveMTD_i$$

and

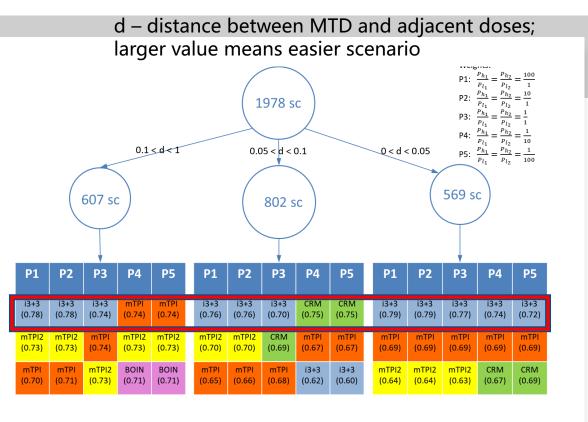
$$Utility_{iB} = R_2 \times \%PntAtMTD_i - p_{l_2} \times \%PntBelowMTD_i - p_{h_2} \times \%PntAboveMTD_i$$

The total utility for design i is defined as the sum of the two utilities:

$$Utility_i = Utility_{iA} + Utility_{iB}$$

and for i = 1, ..., I designs, **Utility** = { $Utility_i$ } denotes the vector of the designs that are under comparison. The J-score, which is the continuous rank index of the total utility, is thus defined as:

$$Jscore_i = \frac{Utility_i - \min(\mathbf{Utility})}{\max(\mathbf{Utility}) - \min(\mathbf{Utility})}$$


J score is between 0 and 1; the larger value, the better the design

J-Score results: Different designs perform better in different types of scenarios

- Based on 1,978 scenarios from users
- Massive simulations
- A tree summarizes the best designs based on scenarios and drug development preferences
 - Aggressive: P1, P2
 - Neutral: P3
 - Conservative: P4, P5

Top performers for each category

- A higher score means better
 - High probability of selecting the MTD
 - Safe in allocating patients
 - Safe in selecting the doses

For non-statisticians and performance-driven practioners who are less concerned about statistical theory:

i3+3,

BOIN,

CCD (with
modification)

My Personal and Personalized Recommendation

For statisticians who balance between principled inference and practical considerations:

mTPI , mTPI-2, keyboard, SPM

For statisticians who mostly focus on principled and model-based inference:

CRM,

BLRM,

EWOC

Summary

- 1. Model-based methods are more powerful
 - Yes, but depends on what you care (simplicity; model-misspecification; 1/3 Stay no matter what)
- mTPI is not safe
 - Yes, but depends on your loss function (e.g., 3/6 is not too much, but 4/8 is)
- 3. CCD and BOIN are model-assisted designs
 - Yes, model-assisted is still model-based
- 4. mTPI, mTPI-2, BOIN, Keyboard
 - They are model-based designs; and mTPI-2 = Keyboard
- 5. Which designs to use? Depends!
 - For classical single-agent DLT-based cohort—enrollment phase 1 trial, physicians can use i3+3 or mTPI-2, but mostly i3+3, unless your drug is very very safe (future talk)
 - CRM is also really good but requires statistical expertise and support
 - BOIN performs really well and is simple; but it has theoretical flaws
 - It seems that

Phase I Trials in oncology is becoming more sophisticated and powerful

- Seamless Phase 1a dose finding + Phase 1b cohort expansion
 - Bayesian hierarchical models for borrowing information
- Immune and targeted therapies
 - MTD may not be the RP2D;
 - Multiple candidate doses for expansion
 - Multiple indications (NSCLC, GC, Ovarian, Prostate, RCC, etc)
- Delayed toxicity outcomes
- Combination treatments (novel + novel combo)
- Eff/Tox dose finding (for cell/gene therapies, e.g., CAR-T)
- Rolling enrollment to speed up the trial
- Borrowing historical data for dose finding (Hi3+3; https://arxiv.org/abs/2010.10244)

Sotorasib (Lumakras) for NSCLC

Approved in May 2021 for patients with NSCLCs harboring KRAS p.G12C mutation (based on a phase 2 trial)

The first drug successfully targets KRAS, a historically "undruggable" and yet important cancer biomarker

However, a post-marketing trial is required by FDA to further explore lower doses than the approved one

This is due to lack of sufficient dose exploration in early-phase development (e.g., phase 1 with small sample size; dose selection under MTD-regime)

Oncology drugs with postmarket dose modification

Examples of Drugs Whose Doses or Schedules Were Modified for Safety or Tolerability after Approval.*													
Drug	Initial Dose and Trials	Modified or Added Dose and Trials	Reason for Modified or Added Dose										
Small-molecule drugs													
Ceritinib (Zykadia)	750 mg PO daily fasted (ASCEND-1)	450 mg PO daily with food (ASCEND-8)	Reduce gastrointestinal toxic effects										
Dasatinib (Sprycel)	70 mg PO twice daily (CA180013, CA180005, CA180006, and CA180015)	100 mg PO daily (CA180034)	Reduce hematologic toxic effects and fluid retention										
Niraparib (Zejula)	300 mg PO daily (NOVA)	200 mg PO daily (PRIMA)	Reduce thrombocytopenia in patients with a lower platelet count or lower body weight										
Ponatinib (Iclusig)	45 mg PO daily (PACE)	45 mg PO daily, then 15 mg PO daily once ≤1% <i>BCR-ABL</i> is achieved (OPTIC)	Reduce vascular occlusive events										
Chemotherapy													
Cabazitaxel (Jevtana)	25 mg/m² IV every 3 wk (TROPIC)	20 mg/m² IV every 3 wk (PROSELICA)	Reduce hematologic toxic effects and infections										
Antibody-drug conjugates													
Gemtuzumab ozogamicin (Mylotarg)	9 mg/m² IV on days 1 and 15 (Study 201, Study 202, and Study 203)	3 mg/m ² IV on days 1, 4, and 7 (Mylofrance-1)	Reduce veno-occlusive disease and trea ment-related mortality										

All the listed drugs had to reduce their dose or schedule due to toxicity

New Era of Dose Optimization

Higher doses might not have better therapeutic activity

 MTD is no longer the optimal dose DLT may not be observed at clinically active doses

Dose escalation and dose selection challenges

Serious toxic effects may occur after several cycles of drug usage

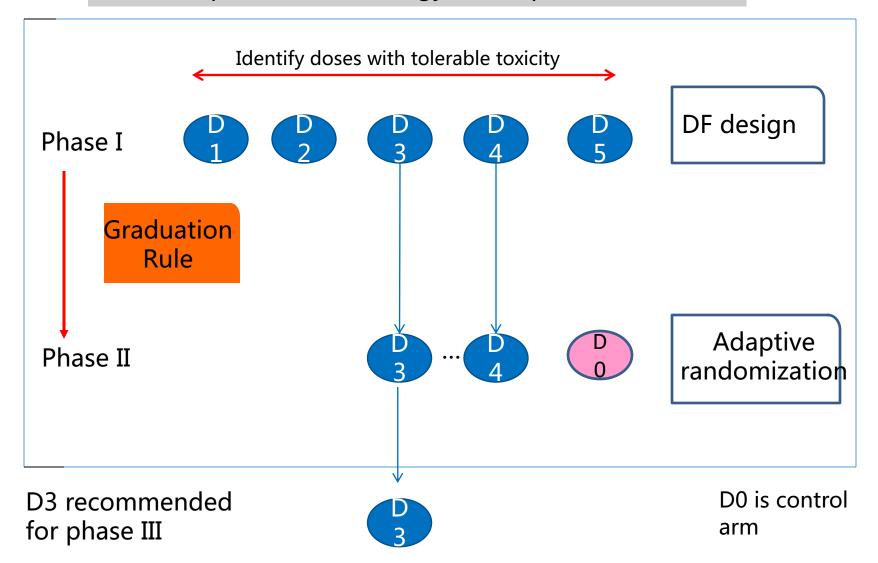
Delayed toxicity/efficacy

New Era of Dose Optimization: Solutions

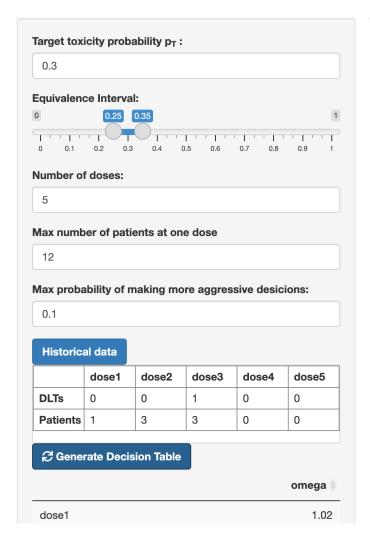
MTD not optimal

 Eff/Tox dose finding (or Biomarker/Tox)

DLT may not be observed at clinically active doses


Eff/Tox/Exposure dose finding

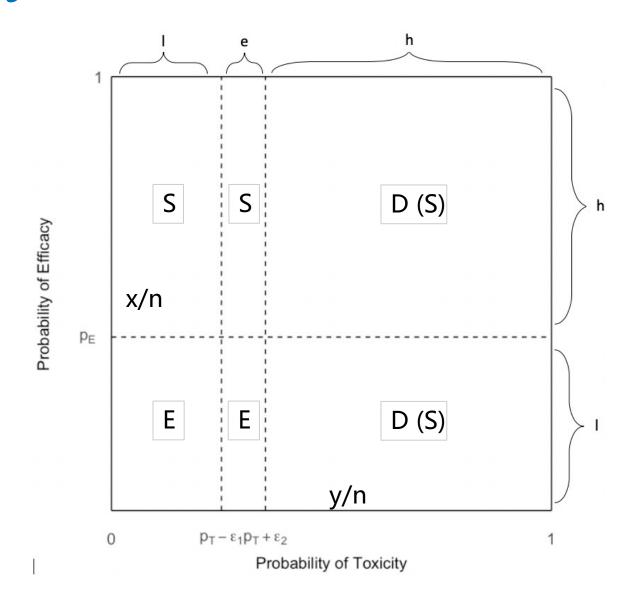
Delayed toxicity/efficacy


 Time-to-event (TITE) or Probability of decision (PoD) modeling

The SEARS Design (Pan et al., 2014, Clinical Trials)

Seamless phase 1/2 oncology dose optimization trials

Hi3+3 for borrowing external trial data (https://hi3design.shinyapps.io/hi33_r_shiny/)

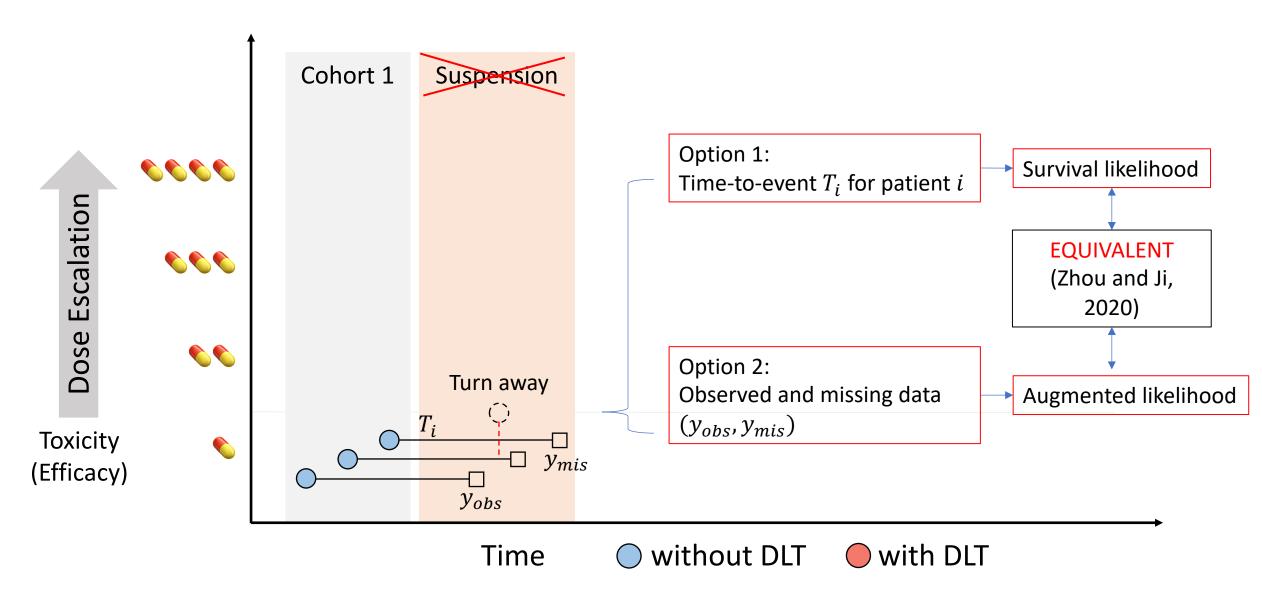

dose1	C	dose2	2	dose	3	dose4 dose5																
	1	\$	2	\$	3	\$	4	\$	5	\$	6	\$	7	\$	8	\$	9	\$ 10	\$ 11	\$	12	\$
0	Е		Е		Е		Е		E		Е		Е		Е		E	Е	Е		Е	
1	S		S		S		E		E		E		E		E		E	Е	Е		E	
2							S		S		S		S		E		E	Е	Е		Е	
3					DU		D		D		D		D		s		s	S	s		Е	
4							DU		DU		D		D		D		D	D	s		s	
5									DU		DU		DU		DU		D	D	D		D	
6											DU		DU		DU		DU	DU	D		D	
7													DU		DU		DU	DU	DU		DU	
8															DU		DU	DU	DU		DU	
9																	DU	DU	DU		DU	
10																		DU	DU		DU	
11																			DU		DU	
12																					DU	

Rows correspond to the number of DLTs;

Columns correspond to the number of patients;

E: Escalate to the next higher dose;

The Ji3+3 design for Eff-Tox Dose Finding


At dose d, y patients have DLT, x respond, out of n patients treated

D (S)

$$\frac{y-1}{n} > p_T - e_1 \left(\frac{y-1}{n} < p_T - e_1 \right)$$

Statistical framework for modeling TITE Toxicity

To speed up the trial with "rolling enrollment"; i.e., no suspension always

Examples of PoD Designs


Published: 14 December 2019

Reference 1:

PoD-TPI: Probability-of-Decision Toxicity Probability Interval Design to Accelerate Phase I **Trials**

Tianjian Zhou, Wentian Guo & Yuan Ji

Statistics in Biosciences 12, 124–145(2020) Cite this article

Search

Reference 2:

Conclusion

• Many innovations have already been developed to meet the challenges of dose optimization

• They need to be tailored for practical trials and logistic requirement

• Oncology early-phase trials are getting more efficient but also more complex due to the innovation

• Overall, it benefits drug development and patients to have the innovation!

