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Dose Response Modeling

• Why is it important?

• 15% of failed first-time applications for New Molecular Entities to 

the FDA were related to uncertainties in dose selection (Sacks 

2014).

• Increasing the number of doses may not improve power, but it 

provides much greater information on the dose-response curve.

• Helpful when choosing and/or justifying a dose to regulatory 

bodies.
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Dose Response Models

• What are they?

• A model which assumes a (non-)parametric form across the 

dose range, so information across all arms is shared for 

estimation.

• Different than pairwise tests which compare doses 

independently.

• Examples:
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EMAX (sigmoid and hyperbolic), 

Quadratic, Exponential, Beta, 

Linear, Log-linear, Log-quadratic…

With limited data, how does one choose a 

dose-response model a priori?



Choosing a Dose-Response Model

• If there is prior data or information about the dose-response curve 

(e.g. other molecules in the same class and/or indication) or 

something is known about the dose-response curve (e.g. monotonic).

• A suitable dose-response model might be able to be chosen a priori.

• How many doses?  Two, three, more?

• More flexible models will require more doses for suitable estimation (e.g.

EMAX).

• What if there’s not much data?  What if there’s a plausible scientific 

hypothesis of non-monotonicity, but it’s unclear at which dose this 

might occur?

• This is a good candidate for using Bayesian model averaging.
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Hypothetical Scenario
• Suppose there’s a new molecule with limited phase I data.

• There is no data from other molecules in the same class.

• There is a plausible scientific hypothesis that the dose-response is 

non-monotonic at high enough doses, but the dose range proposed 

in the phase 2 dose-finding study is not believed to be in that zone.

• To account for the possibility of non-monotonicity, Bayesian model 

averaging is used with prior weight of .75 on an EMAX model, and 

.25 on a quadratic model.
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Example

7

Simulated Data

Independent Bayesian 

Credible intervals

Pairwise p-value (vs placebo) 

is significant for dose 7.5 

(0.005) but not dose 10 (0.14).



Example: Dose Response Models
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EMAX Fit Quadratic Fit



Example: Dose Response Models
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Example: Bayesian Model Averaging
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EMAX & Quadratic Models



Bayesian Model Averaging



Bayesian Model Averaging

• Bayesian model averaging is essentially a 

mixture prior over some quantity of interest.

• In our case, each component of the mixture prior 

is a different dose-response model.

• Bayesian analog to the MCP-Mod

• Bayesian version allows us to include informative 

priors and/or historical information into the 

analysis.
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Bayesian Model Averaging

Let 𝜇 𝑑 represent the mean response at dose 𝑑.

We can construct a prior over 𝑀 different 

parametric models for 𝜇 𝑑 :

𝜋 𝜇 𝑑 = ෍

𝑚=1

𝑀

𝜋 𝜇 𝑑 𝑚 𝜋(𝑚)
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Prior weight 

of model

Prior on the dose 

response for model m



Bayesian Model Averaging

The prior 𝜋 𝜇 𝑑 𝑚 for each model is induced from a parametric 

model.

E.g. Linear Model: 𝜇 𝑑 = 𝛽0 + 𝛽1𝑑

Obtain draws from 𝜋(𝛽0, 𝛽1) and insert into formula above.

To draw a sample from 𝜋 𝜇 𝑑 (full Bayesian model averaging prior):

1. Randomly select a model from 𝜋 𝑚

2. Randomly draw a set of parameters from that model’s prior

3. Obtain 𝜇(𝑑) given the parameters drawn in 2.
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Bayesian Model Averaging Posterior

𝑝 𝜇 𝑑 ∣ 𝑦 = ෍

𝑚=1

𝑀

𝑝 𝜇 𝑑 𝑦,𝑚 𝑝(𝑚 ∣ 𝑦)

𝑝 𝑚 𝑦 =
𝑝 𝑦 𝑚 𝜋 𝑚

σ𝑚∗ 𝑝 𝑦 𝑚∗ 𝜋(𝑚∗)
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Marginal likelihood of data for 

model m (integrate over prior)



Bayesian Model Averaging

The posterior p 𝜇 𝑑 𝑚, 𝒚 for each model is induced from a parametric 

model.

E.g. Linear Model: 𝜇 𝑑 = 𝛽0 + 𝛽1𝑑

Obtain draws from p(𝛽0, 𝛽1 ∣ 𝒚) and insert into formula above.

To draw a sample from p 𝜇 𝑑 ∣ 𝒚 (Bayesian model averaging posterior):

1. Randomly select a model from 𝑝 𝑚 𝒚

2. Randomly draw a set of parameters from that model’s posterior

3. Obtain 𝜇(𝑑) given the parameters drawn in 2.
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Difficulties of BMA

Calculating the marginals: 𝑝 𝑦 𝑚

• Closed forms usually not available

• Monte Carlo estimates often have high variability and are 

therefore unreliable.

• One can avoid calculating marginals through one large MCMC 

chain, e.g., reversible jump MCMC (Green, 1995).

• Difficult to ensure mixing

• Computationally intense, often need custom MCMC samplers.

Sensitivity to diffuse priors
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Philosophical Thoughts of BMA

• Do the classical weights using 𝑝 𝑦 𝑚 really 

give us what we want?

• Essentially 𝑝 𝑦 𝑚 is “how likely is it that this 

prior generated the parameters which generated 

the observed data”

• Don’t we really want the weights to reflect “which 

model fits the data best?”
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An Alternative Weight

• Ando & Tsay (2010) replace 𝑝 𝑦 𝑚 with exp(𝑝∗ 𝑦 𝑚 ) where 

𝑝∗ 𝑦 𝑚 is an estimate of the posterior log-predictive likelihood of 

the observed data for model m.

• This is justified using a Kullback-Leibler argument (comparing the 

empirical and posterior predictive distributions).
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Pros

• MCMC can be fit separately for each 

candidate model.

• Weights are less sensitive to 

diffuse/non-informative prior choices.

• Calculation of weights can be 

obtained directly from MCMC output.

Cons

• Breaks the canonical Bayes’ Formula

• (Is that a bad thing?)

• The estimate of 𝑝∗ 𝑦 𝑚 is biased

• Corrections are suggested by Ando 

& Tsay (2010), assuming i.i.d data.



BMA and Dose-Response

• Gould (2019) proposed BMA-Mod which is the 

Bayesian analog of MCP-Mod.

• Applies Bayesian model averaging with the 

weights of Ando & Tsay (2010) to dose-

response modeling.

• Includes a number of interesting examples.
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Longitudinal Dose-Response 

Models
(MANUSCRIPT IN PROGRESS)



Why Longitudinal models?

• Potentially improve decision making earlier

• Use all available information (e.g. from not-yet-

completers)

• Understand the longitudinal response profile for 

each dose.
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Longitudinal Dose Response

We consider a class of longitudinal dose-response 

models of the form

𝜇 𝑑, 𝑡 = 𝛼 + 𝑔 𝑑 × 𝑓(𝑡)

where 𝑔 𝑑 is a dose-response model, 𝑓(𝑡) is a 

longitudinal profile at time 𝑡.

𝑓(𝑡) must satisfy the following conditions:
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• Continuous

• 𝑓 0 = 0
• 0 ≤ 𝑓 𝑡 ≤ 1
• max

𝑡
𝑓 𝑡 = 1



ITP Model

• Fu and Manner 

(2010)

𝑓 𝑡 =
1 − exp(−𝛽𝑡)

1 − exp(−𝛽𝑇)
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IDP Model (Pallavi Ray)

𝑓 𝑡 = 𝑓1 𝑡 𝐼 0 ≤ 𝑡 < 𝑇1 +
𝑓2 𝑡 𝐼 𝑇1 ≤ 𝑡 < 𝑇2 +
𝑓2 𝑇2 𝐼 𝑇2 ≤ 𝑡 ≤ 𝑇

𝑓1 𝑡 =
1 − exp −𝛽1𝑡

1 − exp(−𝛽1𝑇1)

𝑓2 𝑡 = 1 − 𝛾
1 − exp(−𝛽2 𝑡 − 𝑇1 )

1 − exp(−𝛽2 𝑇2 − 𝑇1 )
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Simulations



Trial Simulation Scenarios
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Setup

• 1:1:1:1:1 randomization over doses

• Interim for early futility or efficacy

• Interim timing at 50% and 75% completers

• 25 and 50 subjects per arm

• Enrollment of 10 and 30 patients per week

• Analysis: Bayesian model averaging with dose response 

models: quadratic, log-quadratic, EMAX, exponential 

crossed with longitudinal ITP and IDP models.

• 8 total models with equal prior weight.
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MSE
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MSE vs Interval Width
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Posterior Weights
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Interim Stopping
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Future Work

• More complex correlation structures for the 

longitudinal component.

• Comparison with non-parametric methods
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dreamer R Package



dreamer R package
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• https://github.com/rich-payne/dreamer

https://github.com/rich-payne/dreamer
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