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Dose Response Modeling

Why is it important?

« 15% of failed first-time applications for New Molecular Entities to

the FDA were related to uncertainties in dose selection (Sacks
2014).

 Increasing the number of doses may not improve power, but it
provides much greater information on the dose-response curve.

« Helpful when choosing and/or justifying a dose to regulatory
bodies.

© 2021 Eli Lilly and Company 3



Dose Response Models

What are they?

* A model which assumes a (non-)parametric form across the
dose range, so information across all arms is shared for

estimation.

- Different than pairwise tests which compare doses

iIndependently.
- Examples:

EMAX (sigmoid and hyperbolic),
Quadratic, Exponential, Beta,
Linear, Log-linear, Log-quadratic...

With limited data, how does one choose a

dose-response model a priori?
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Choosing a Dose-Response Mbdel

If there is prior data or information about the dose-response curve
(e.g. other molecules in the same class and/or indication) or
something is known about the dose-response curve (e.g. monotonic).

» A suitable dose-response model might be able to be chosen a priori.

How many doses? Two, three, more?

« More flexible models will require more doses for suitable estimation (e.g.
EMAX).

What if there’s not much data? What if there’s a plausible scientific
hypothesis of non-monotonicity, but it's unclear at which dose this
might occur?

« This is a good candidate for using Bayesian model averaging.
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Hypothetical Scenario

Suppose there’'s a new molecule with limited phase | data.
There is no data from other molecules in the same class.

There is a plausible scientific hypothesis that the dose-response is
non-monotonic at high enough doses, but the dose range proposed
in the phase 2 dose-finding study is not believed to be in that zone.

To account for the possibility of non-monotonicity, Bayesian model
averaging is used with prior weight of .75 on an EMAX model, and
.25 on a quadratic model.

© 2021 Eli Lilly and Company



Example

Pairwise p-value (vs placebo) Independent Bayesian

is significant for dose 7.5 . .
(0.005) but not dose 10 (0.14). Credible intervals

2.5%, 97.5% Posterior Quantiles

Simulated Data
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Example: Dose Response Models

EMAX Fit Quadratic Fit
Posterior mean (solid) and 2.5%, 97.5% quantiles (dashed Posterior mean (solid) and 2.5%, 97.5% quantiles (dashed)
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Example: Dose Response Models

Posterior mean (solid) and 2.5%, 97.5% quantiles (dashed)

25 5.0 75 10.0
Dose
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Example: Bayesian Model Averaging

EMAX & Quadratic Models

Posterior mean (solid) and 2.5%, 97.5% quantiles (dashed)

0.0 1.0 2.5 5.0 7.5 10.0
Dose
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Bayesian Model Averaging



Bayesian Model Averaging

- Bayesian model averaging is essentially a
mixture prior over some guantity of interest.

 In our case, each component of the mixture prior
IS a different dose-response model.
- Bayesian analog to the MCP-Mod

- Bayesian version allows us to include informative
priors and/or historical information into the
analysis.
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Bayesian Model Averaging

Let u(d) represent the mean response at dose d.

We can construct a prior over M different
parametric models for u(d):

Prior weight

y / of model
n(u(@) = ) (@) | m)u(m)

m=1

\ Prior on the dose
response for model m
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Bayesian Model Averaging

The prior t(u(d) | m) for each model is induced from a parametric
model.

E.g. Linear Model: u(d) = B, + p1d
Obtain draws from (f,, f;) and insert into formula above.

To draw a sample from n(u(d)) (full Bayesian model averaging prior):
1. Randomly select a model from (m)

2. Randomly draw a set of parameters from that model’s prior

3. Obtain u(d) given the parameters drawn in 2.
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Bayesian Model Averaging Pasterior

M
pu(@ 19) = ) p(u(d) | y,m)pm 1 y)
m=1

Marginal likelihood of data for

/ model m (integrate over prior)

p(y | m)m(m)
Y P(y | m*)m(m*)

p(mly) =



Bayesian Model Averaging

The posterior p(u(d) | m,y) for each model is induced from a parametric
model.

E.g. Linear Model: u(d) = B, + p1d
Obtain draws from p(f,, 51 | ¥) and insert into formula above.

To draw a sample from p(u(d) | y) (Bayesian model averaging posterior):
1. Randomly select a model from p(m | y)

2. Randomly draw a set of parameters from that model’s posterior

3. Obtain u(d) given the parameters drawn in 2.
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Difficulties of BMA :

Calculating the marginals: p(y | m)
« Closed forms usually not available

« Monte Carlo estimates often have high variability and are
therefore unreliable.

* One can avoid calculating marginals through one large MCMC
chain, e.qg., reversible jump MCMC (Green, 1995).

« Difficult to ensure mixing
« Computationally intense, often need custom MCMC samplers.

Sensitivity to diffuse priors
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Philosophical Thoughts of BMA

* Do the classical weights using p(y | m) really
give us what we want?

« Essentially p(y | m) is “how likely is it that this
prior generated the parameters which generated
the observed data”

- Don’t we really want the weights to reflect “which
model fits the data best?”



Ando & Tsay (2010) replace p(y | m) with exp(p*(y | m)) where
p*(y | m) is an estimate of the posterior log-predictive likelihood of
the observed data for model m.

This is justified using a Kullback-Leibler argument (comparing the
empirical and posterior predictive distributions).

Pros Cons
MCMC can be fit separately for each . Breaks the canonical Bayes’ Formula
candidate model. « (Is that a bad thing?)
Weights are less sensitive to * The estimate of p*(y | m) is biased
diffuse/non-informative prior choices. - Corrections are suggested by Ando
Calculation of weights can be & Tsay (2010), assuming i.i.d data.

obtained directly from MCMC output.
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BMA and Dose-Response

* Gould (2019) proposed BMA-Mod which is the
Bayesian analog of MCP-Mod.

* Applies Bayesian model averaging with the
weights of Ando & Tsay (2010) to dose-
response modeling.

 Includes a number of interesting examples.



Longitudinal Dose-Response
Models

(MANUSCRIPT IN PROGRESS)



Why Longitudinal models?

« Potentially improve decision making earlier

» Use all avalilable information (e.g. from not-yet-
completers)

» Understand the longitudinal response profile for
each dose.
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Longitudinal Dose Response

We consider a class of longitudinal dose-response
models of the form

uld,t) = a+g(d) X f(t)

where g(d) is a dose-response model, f(t) is a
longitudinal profile at time t.

f (t) must satisfy the following conditions:

« Continuous c 0<f(t) <1
* f(0)=0 + max f(¢) =1
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ITP Model ‘

 Fu and Manner
(2010)

f(t) =

1 —exp(—ft)

1 —exp(—pfT)

furction value
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|
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IDP Model (Pallavi Ray) '

fO=F/[OI0<t<T)+ .
LT, <t<T,)+
fo(T)I(T, <t <T)

_ 1- exp(_ﬁlt) ]
hit) = 1 —exp(—=p1T1) N
L) =1 -y 1 —exp(—f,(t —T1))

1 —exp(—p(T, —Ty))
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Simulations



Trial Simulation Scenarios
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1:1:1:1:1 randomization over doses

Interim for early futility or efficacy

* Interim timing at 50% and 75% completers
25 and 50 subjects per arm

Enrollment of 10 and 30 patients per week

Analysis: Bayesian model averaging with dose response
models: quadratic, log-quadratic, EMAX, exponential
crossed with longitudinal ITP and IDP models.

- 8 total models with equal prior weight.
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MSE

Posterior Mean-Squared-Error
null-null emax-itp emax-idp
quad -
logquad -
exp -
emax -

MSE

bma -

015

plateau-plateau plateau-decrease bma idp itp

Dose response

quad - 0.104 0.128 0.118 0.182

logquad =

exp-

emax -

bma -

idp itp
Longitudinal

bma
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MSE vs Interval Width

MSE
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Posterior Weights

Posterior Weights
null-null emax-itp emax-idp
quad - 0.27 0.02 0.01 0.00 0.00 0.00
logquad = 0.27 0.02 0.00 0.00 0.00 0.00
exp - 0.20 0.03 0.03 0.00 0.00 0.00
Median weight
g ! ; 075
@ plateau-plateau plateau-decrease P bF 050
E quad - 0.00 0.00 0.00 0.00 0.25
logquad - 0.00 0.30 0.00 0.31
exp - 0.00 0.36 0.00 0.39
emax - 0.00 0.26 0.00 0.29
TP IDP TP IDP
Longitudinal
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Interim Stopping
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Future Work '

* More complex correlation structures for the
longitudinal component.

« Comparison with non-parametric methods
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dreamer R Package



dreamer R package

 https://github.com/rich-payne/dreamer

dreamer



https://github.com/rich-payne/dreamer
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