abbvie

Incorporate External Control Data in New Clinical Trial Design and Analysis

Lanju Zhang Abbvie Inc

October 16, 2020

Disclaimer

This presentation was sponsored by AbbVie. AbbVie contributed to the design, research, and interpretation of data, writing, reviewing, and approving the publication. This presentation contains no proprietary AbbVie data.

Lanju Zhang is an employee of AbbVie Inc. and may own AbbVie stock.

Acknowledgements

Thanks to my colleagues

- Ivan Chan
- Li Wang
- Zailong Wang
- Su Chen
- Hongwei Wang
- Yihua Gu
- Yang Yang

Outline

- Introduction to external control data incorporation in trial design and analysis
 - Regulatory landscape
 - Data
 - Incorporation spectrum
 - Statistical methodology
- Two Applications
 - Control substitution to augment in-trial control arm
 - Synthetic Control arm
- Conclusions

Introduction: Incorporation into Trial Design and Analysis

- Traditionally
 - Trial design assumptions
 - Trial results contextualization
 - Non-inferiority trial margin

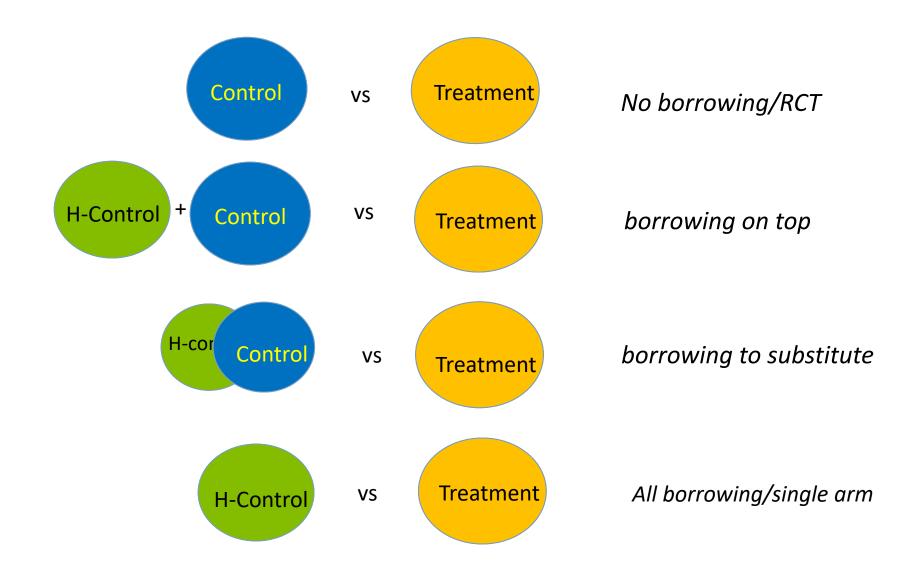
Introduction: Regulatory Landscape

- Adaptive Design Guidance (FDA, 2019a)
 - Bayesian Adaptive Designs
 - Explicit borrowing of information from external sources, e.g., previous trials, natural history studies, and registries, via informative prior distributions to improve the efficiency of a trial.

Introduction: Regulatory Landscape

- Complex and Innovative Design Guidance (FDA, 2019b)
 - When external information is explicitly borrowed into a design, such as in a Bayesian framework, a rationale for the borrowing and an explanation of how the prior distribution was formed from the prior information.
 - If prior information is being used, details about the source and choice of the prior information, its relevance to the proposed trial design, and an explanation of steps taken to ensure that all relevant prior information is accounted for, so that the prior information does not lead to misleading results.
 - For Bayesian inference, appropriate alternative trial characteristics should be considered, such as the maximum posterior probability of the null across values of the test statistic in the rejection region or the maximum posterior probability of a minimally clinically significant treatment effect across values of the test statistic outside of the rejection region (Ref. 5). It is also often informative to assess the sensitivity of trial operating characteristics to the choice of a prior distribution.

Introduction: Incorporation Spectrum



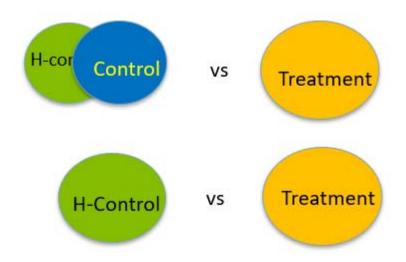
Introduction: Data Selection

- Pocock (1976) proposed guidelines of incorporating historical data (six criteria to be relevant); suggested a Bayesian approach
 - Patient Population
 - Prior and Concomitant therapy
 - Control treatment
 - Endpoints/outcome measures
 - Regions
 - SOC/medical practice
 - Contemporaneity
 - Analysis methods

Introduction: Control Data

Control type	Concurrent	concurrent + external RCT data	external RCT data	RWD	
Evidence strength	strongest	Strong when the results of the two control sources are similar	fair	fair	
Data quality for decision making	best	Good when the results of the two control sources are similar	fair	fair	
Regulatory acceptance	most acceptable	Acceptable	acceptable	negotiable	
Timeline	longest	shorter	shortest	shortest	
Cost	largest	lower	lowest	lowest	
Potential area of application	diseases with SOC	diseases with SOC	rare diseases, life- threatening conditions, or pediatric trials	rare diseases, safety evaluation	
Statistical Methods	standard	Bayesian/frequentist	Matching or other causal inference methods for confounding control	matching or other causal inference methods for confounding control	
Registration	yes	potential	potential	potential	

Introduction: Statistical Methodology

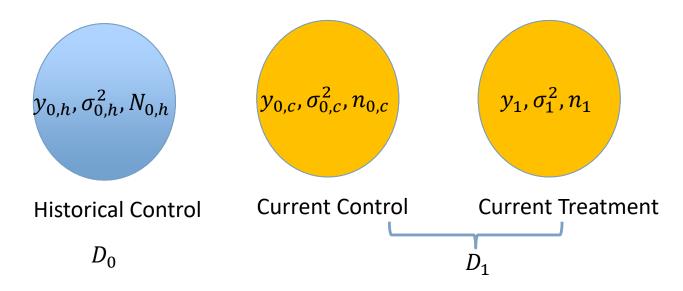


- Bayesian Methods
 - Data selection
 - Summary data
- Propensity Score
 - Data selection
 - Individual-level data

Introduction: Statistical Methodology

- Pocock (1976) proposed guidelines of incorporating historical data (six criteria to be relevant); suggested a Bayesian approach
- Historical data summarization: Meta-analytic Predictive approach (Neuenchwander et al, 2010)
- Bayesian historical data borrowing
 - Power Prior (Ibrahim and Chen, 2000, Psioda and Ibrahim, 2019)
 - Commensurate prior (Hobbs et al, 2011)
 - Mixture Prior (Schmidli et al, 2014)
- Frequentist approach (reviewed in Viele et al 2014)

Data



- Continuous endpoint
- Normally distributed, control mean μ_0 , treatment mean μ_1 , known variance
- Interest: comparing μ_0 and μ_1

- Bayesian: μ_0 and μ_1 are random quantities
- Priors
 - Control prior based on historical data
 - Treatment prior: noninformative
- Posteriors
 - μ_1 , μ_0
 - Trial success: $\Pr(\mu_1 \mu_0 > \Delta | D_0, D_1) > p_0$

- Power Prior Approach (Ibrahim and Chen, 2000)
- Duan et al (2006) and Neuenschwander et al (2009)
 - Ibrahim and Chen (2000) violates likelihood principle
 - Proposed to normalize the prior
- Prior and posterior for μ_1 and μ_0
 - Posterior is proportion to the following

•
$$\alpha_0^{a-1}(1-\alpha_0)^{b-1}\frac{L(\mu_0|D_0)^{\alpha_0}\pi_0(\mu_0)}{\int L(\mu_0|D_0)^{\alpha_0}\pi_0(\mu_0)d\mu_0}\pi_1(\mu_1)L(\mu_0,\mu_1|D_1)$$

Prior for power α_0

Normalized Prior for μ_0

Prior for μ_1

Likelihood of D_1

o a, b hyperparameters

• α_0 doesn't depend on in-trial data

- Commensurate Power Prior Approach (Hobbs et al, 2011)
 - Assume different parameters for historical and current control data
- Prior and posterior for μ_1 , μ_0 , and μ_{0h}
 - Posterior is proportion to the following

$$\frac{(L(\mu_{0h}|D_0)p(\mu_0|\mu_{0h},\tau))^{\alpha_0}}{\iint (L(\mu_{0h}|D_0)p(\mu_0|\mu_{0h},\tau))^{\alpha_0}d\mu_{0h}d\mu_0}p(\alpha_0|\tau)p(\tau)\pi_1(\mu_1)L(\mu_0,\mu_1|D_1)$$

- $\circ \mu_{0h}$: historical control mean
- \circ τ : between historical trial variability, or commensurability
- o $p(\mu_0|\mu_{0h},\tau)$: control prior, eg, $N(\mu_{0h},\tau^2)$
- o $p(\alpha_0|\tau)$: prior of α_0 depends on τ , eg, beta $(\frac{\alpha_0}{\tau^2}, 1)$

- Robust Mixture Prior Approach (Schmidli et al, 2014)
 - Hierarchical modeling and meta-analytic predictive prior
- Prior μ_0
 - $y_{0,h}^{\sim} N(\mu_{0h}, \sigma^2)$, h = 1, 2, ... H
 - $\mu_{01}, ..., \mu_{0H}, \mu_0 \sim N(\theta, \tau^2)$
 - θ , flat prior and τ half normal prior
 - Effective sample size:
 - Mixture based on Kullback-Leibler divergence
 - Robustize by adding a non-informative component
 - Prior for μ_1 noninformative
 - R Package RBest

- Proposed approach (L Zhang et al, 2020)
 - Build borrowing into design
- Basic ideas
 - Summary data, eg, mean, variance and between trial variability
 - Effective sample size as an upper bound for borrowing size
 - Conjugate prior
 - Commensurability depends on bias (=historical control –in trial control mean)
 - Explicit relationship between bias and error rates
 - Final borrowing size determined by control of error rate inflation
 - A streamlined process from data selection to design and analysis

Priors

- MAP: $\mu_0 \sim N\left(y_{0,h}, \frac{\sigma_{0,h}^2}{n_{0,h}}\right)$ from meta analysis o $n_{0,h}$: borrowing size
- Treatment prior: noninformative

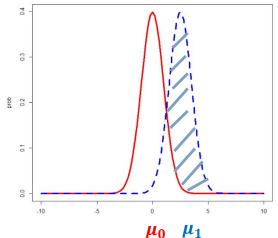
Posteriors

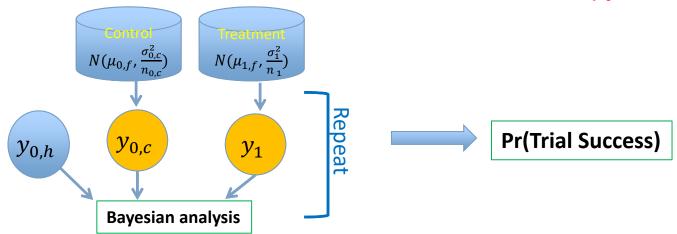
• Control:
$$\mu_0 \sim N \left(\frac{n_{0,h} \sigma_{0,c}^2}{n_{0,h} \sigma_{0,c}^2 + n_{0,c} \sigma_{0,h}^2} y_{0,h} + \frac{n_{0,c} \sigma_{0,h}^2}{n_{0,h} \sigma_{0,c}^2 + n_{0,c} \sigma_{0,h}^2} y_{0,c}, \frac{\sigma_{0,h}^2 \sigma_{0,c}^2}{n_{0,h} \sigma_{0,c}^2 + n_{0,c} \sigma_{0,h}^2} \right)$$

• Treatment:
$$\mu_1 \sim N\left(y_1, \frac{\sigma_1^2}{n_1}\right)$$
 $y_{0,h}, \sigma_{0,h}^2, N_{0,h}$ $y_{0,c}, \sigma_{0,c}^2, n_{0,c}$ y_1, σ_1^2, n_1

Historical Control Current Treatment

- Trial success: $\Pr(\mu_1 \mu_0 > \Delta | Data) > p_0$
 - Assume Δ =0, p_0 =1 $-\alpha$ =95% throughout
- Design properties





Design Properties

- Pr(trial success | true trt diff) depends on
 - treatment difference $\mu_{1,f} \mu_{0,f}$
 - Bias of historical control data $(y_{0,h} \mu_{0,f})$ commensurability
 - The proportion of historical control patients a_0 prior power a_0 =(#historical control patients)/(# combined control patients)

$$\Pr(\text{Trial success}) = \Pr(\Pr(\mu_1 - \mu_0 > 0 | Data) > p_0)$$

Effect size

Bias

$$=\Phi\left(\frac{\frac{(\mu_{1,f}-\mu_{0,f})}{\sigma\sqrt{\frac{1}{n_{1}}+\frac{1-a_{0}}{n_{0,h}+n_{0,c}}}}-\frac{a_{0}(y_{0,h}-\mu_{0,f})}{\sigma\sqrt{\frac{1}{n_{1}}+\frac{1-a_{0}}{n_{0,h}+n_{0,c}}}}-\Phi^{-1}(p_{0})\frac{\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{0,h}+n_{0,c}}}}{\sqrt{\frac{1}{n_{1}}+\frac{1-a_{0}}{n_{0,h}+n_{0,c}}}}\right)$$
Borrowing fraction a_{0}

Design Properties

- No borrowing $(a_0 = 0)$
 - Type I error rate is exactly lpha
 - Power and sample size are exactly as usual
- With borrowing $(a_0 > 0)$
 - When there is no bias, there is slight type I error rate deflation and power gain.
 - When there is bias, type I error rate and power change depends on the bias direction; its magnitude depends on borrowing fraction
 - If a_0 =1, all control data is historical, a single arm trial

Trial Design Process

Historical Data Summary

Step 1

Sample size and power without borrowing

Step 2

Power with reduced control arm without borrowing

Step 3

Bias and borrowing impact

Step 4

Determine final sample sizes

Application: Rheumatoid Arthritis POC trial

- Step 0: Historical data summary (MAP prior)
 - identify relevant historical trials (Pocock criteria, eg)
 Historical Trial data (DAS28-CRP)

Phase	n	mean	sd
2	176	-0.8	1.5
3	131	-0.6	1.5

- Meta analysis
 - Mean: -0.71; 95% CI: (-0.919, -0.5); effective sample size: 116

Step 1: determine balanced sample size without borrowing

$$n_1 = \frac{2(\Phi^{-1}(1-\alpha) + \Phi^{-1}(1-\beta))^2 \sigma^2}{\delta^2}$$

- δ =-0.88, α =0.05, β =0.2, σ =1.5, n_1 =36
- Step 2: for different randomization ratio $k = n_1$: $n_{0,c}$ (eg, k=2, 3, 4 means randomization ratio 2:1, 3:1, 4:1), determine power without borrowing.

$$1 - \beta_1 = \Phi\left[\sqrt{\frac{2}{1+k}} \left(\Phi^{-1}(1-\alpha) + \Phi^{-1}(1-\beta)\right) - \Phi^{-1}(1-\alpha)\right]$$

Power using different randomization ratio k with α =0.05 and 1- β =80% without borrowing

k	$1-\beta_1$
1	80%
3/2	72%
2	65%
3	54%

• Step 3: Assume bias is a proportion r of the treatment difference, ie, $|y_{0,h}-\mu_{0,f}|=r\delta.$ Recall $a_0=\frac{n_{0,h}}{n_{0,h}+n_{0,c}}.$ Given k, r, and a_0 ,

Type I error rates

$$\Phi \left[\frac{\pm \sqrt{2} r a_0 \left(\Phi^{-1} (1 - \alpha) + \Phi^{-1} (1 - \beta) \right) - \Phi^{-1} (p_0) \sqrt{1 + k(1 - a_0)}}{\sqrt{1 + k(1 - a_0)^2}} \right]$$

Power

$$\Phi\left[\frac{\sqrt{2}(1\pm ra_0)(\Phi^{-1}(1-\alpha)+\Phi^{-1}(1-\beta))-\Phi^{-1}(p_0)\sqrt{1+k(1-a_0)}}{\sqrt{1+k(1-a_0)^2}}\right]$$

- δ =-0.88, r=0.24
- These formulae are general and don't depend on sample sizes, effect size, standard deviation etc.

 Step 3: select parameters based on impact on type I error rate and power;

Type I error rate (Error) and power for **k=2**, α =0.05, 1- β =80% Red cells for scenarios with power<70% or type I error rate >0.1.

<i>a</i> ₀\r	0		0.1		0.2		0.3		0.4		0.5	
	Error	Power	Error	Power	Error	Power	Error	Power	Error	Power	Error	Power
0.5	0.029	0.834	0.012 0.040	0.796 0.868	0.014 0.053	0.753 0.896	0.010 0.071	0.706 0.920	0.007 0.093	0.655 0.939	0.004 0.119	0.600 0.954
0.6	0.027	0.873	0.018 0.041	0.831 0.907	0.011 0.060	0.780 0.934	0.007 0.085	0.722 0.955	0.004 0.118	0.657 0.970	0.002 0.158	0.588 0.980
0.7	0.028	0.907	0.016 0.046	0.863 0.939	0.009 0.072	0.807 0.962	0.005 0.108	0.740 0.977	0.002 0.156	0.661 0.987	0.001 0.217	0.575 0.993
0.8	0.031	0.935	0.016 0.055	0.893 0.963	0.008 0.092	0.834 0.980	0.004 0.144	0.758 0.990	0.002 0.215	0.666 0.995	0.001 0.302	0.563 0.998

Note: In each cell the top value for bias favoring null and the bottom for bias alternative

 a_0 : fraction of historical control patients among all control patients;

r: bias/(treatment difference); k: randomization ratio

 Step 3: select parameters based on impact on type I error rate and power

Type I error rate (Error) and power for **k=3**, α =0.05, 1- β =80% Red cells for scenarios with power<70% or type I error rate >0.1.

<i>a</i> ₀ \r ⋅	0		0.1		0.2		0.3		0.4		0.5	
	Error	Power	Error	Power	Error	Power	Error	Power	Error	Power	Error	Power
0.6	0.6 0.022 0.8	0.812	0.015	0.762	0.009	0.705	0.006	0.642	0.003	0.576	0.002	0.507
0.6		0.012	0.033	0.855	0.049	0.891	0.069	0.920	0.095	0.943	0.127	0.960
0.7	0.7 0.022	0.866	0.013	0.813	0.007	0.749	0.003	0.675	0.002	0.593	0.001	0.507
0.7			0.036	0.908	0.058	0.939	0.087	0.961	0.128	0.976	0.179	0.986
0.0	0.00	025 0.042	0.013	0.862	0.006	0.795	0.003	0.712	0.001	0.615	0.000	0.511
0.8 0.025	.025 0.913	0.045	0.948	0.076	0.970	0.121	0.984	0.183	0.992	0.262	0.996	

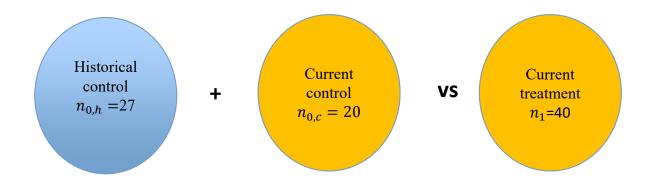
Note: In each cell the top value for bias favoring null and the bottom for bias alternative

 a_0 : fraction of historical control patients among all control patients;

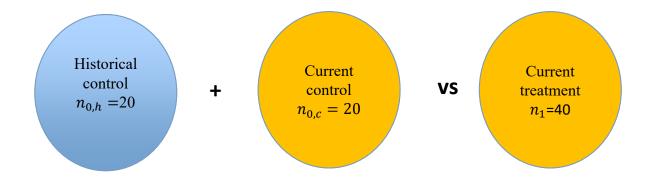
r: bias/(treatment difference);

k: randomization ratio

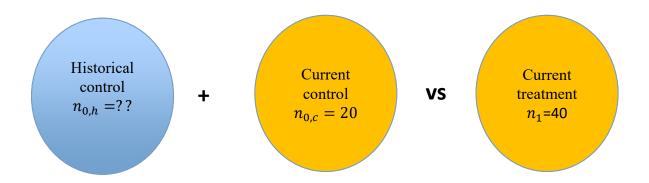
- Step 4: determine sample sizes
 - $n_1 = 36$
 - k=2:1 and $a_0=0.6$
 - $n_{0,c} = n_1/k=18$, $n_{0,h} = \frac{n_{0,c} a_0}{1-a_0} = 27$
 - Ensure $n_{0,h} <= n_max = 117$
- In the data analysis, evaluate $\Pr(\mu_1 \mu_0 > \Delta | Data)$ and check whether it is $> p_0$.



- Step 4: determine sample sizes
 - $n_1 = 36$
 - k=2:1 and $a_0=0.6$
 - $n_{0,c} = n_1/k=18$, $n_{0,h} = \frac{n_{0,c} a_0}{1-a_0} = 27$
 - Ensure $n_{0,h} <= n_max = 117$
- In the data analysis, evaluate $\Pr(\mu_1 \mu_0 > \Delta | Data)$ and check whether it is $> p_0$.



- Dynamic borrowing
 - Determine actual borrowing size depends on observed difference between controls
 - o Larger difference, borrowing less



Regulatory Interaction

- Teleconference with FDA
 - Initial feedback
 - Only in-trial data will be considered
 - Meeting minutes
 - o Depending on the data selection and stat methods, can be considered
 - SAP submission
 - No comments received

Regulatory Interaction

- Teleconference with FDA
 - Initial feedback
 - Only in-trial data will be considered
 - Meeting minutes
 - Depending on the data selection and stat methods, can be considered
 - SAP submission
 - No comments received

Results

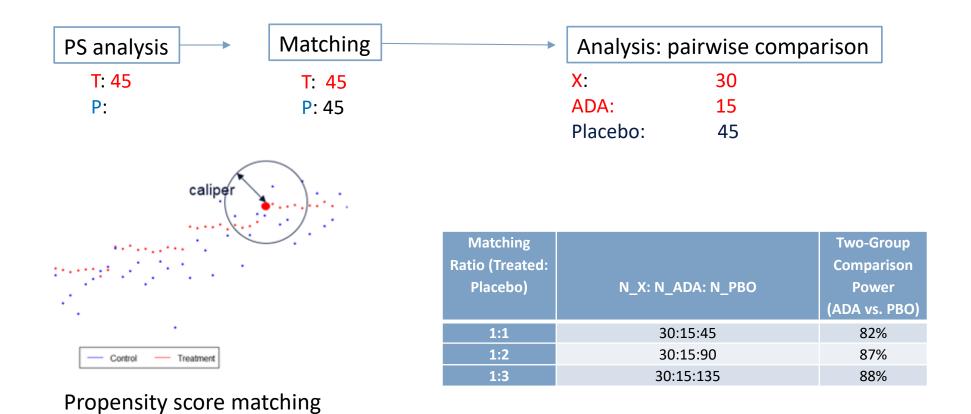
- Planned borrowing $(n_{0,h} = 20)$
 - Posterior prob > 95%
- Dynamic borrowing $(n_{0,h} = 60)$
 - Posterior prob was very similar

- Subject-level data available
 - Similar trial settings
 - Covariate data
 - Outcome data
- Propensity score approach
 - Matching
 - Stratification
 - Inverse probability weighting
 - Regression

- Process for integrity
 - Independent team doing matching
 - Prespecified rules
 - Masked from outcome
 - Matching was done after enrollment complete and before unblinding
 - A secure location for covariate data

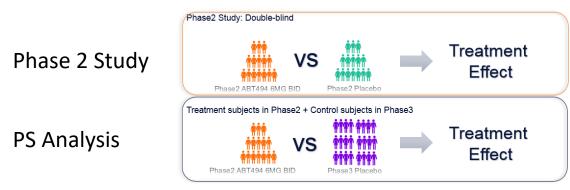
- A POC study comparing a new drug X to Adalimumab for RA
 - 2:1 randomization ratio: X 30; Ada: 15
- Created a synthetic placebo arm as common control
 - Placebo patients available from 3 recently completed clinical trials
 - Used individual level data matched by baseline characteristics
 - Propensity score matching based on baseline covariates

 Comparing to a synthetic placebo arm with Propensity Score Matching



A Pilot study

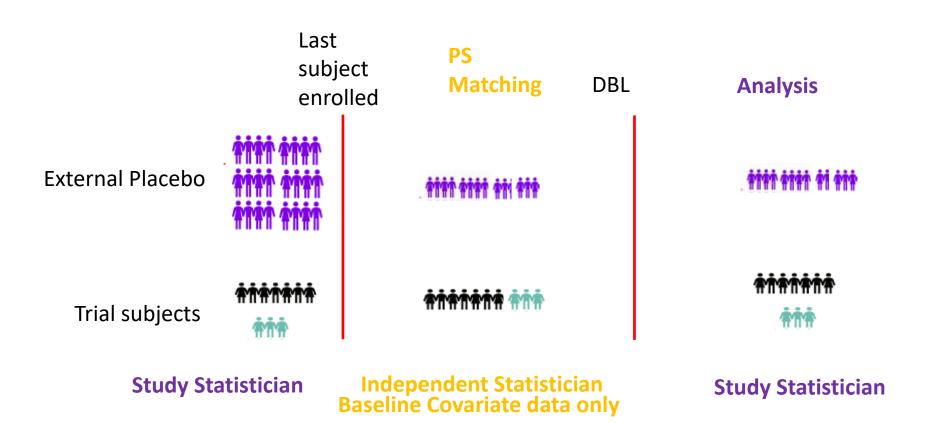
• Comparing Ph2 trial result versus Ph2 treatment + Ph3 Placebo with of 4 PS-methods



Summary of results: ACR20 (Binary)

Approach	N_{trt} : N_{pbo}	Absolute Dif	ference	Odds Ratio		
		Estimate 95% CI	P-value	Estimate 95% CI	P-value	
Original Study550	55:55	0.236 (0.037, 0.436)	0.022	2.636 (1.218, 5.705)	0.014	
Combined Dataset						
Stratifying by PS	54:159	0.276 (0.102, 0.449)	0.002	3.151 (1.483, 6.695)	0.005	
Matching by PS	38:38	0.270 (0.034, 0.506)	0.025	3.160 (1.217, 8.204)	0.018	
Weighting by PS	54:159	-	-	2.596 (1.051, 6.413)	0.039	
Logistic regression adjusting for PS	54:159	-	-	3.354 (1.580, 7.118)	0.002	

 Used Independent Statistician to select matching controls prior to database lock



Plan

- Six demographic and 11 baseline disease characteristic covariates
- Total eight scenarios
 - PS modeling: logistic with or without Firth penalty
 - Matching algorithm: greedy and optimal with different caliper
 - Matching ratio: 1:1 or 2:1
- Criteria: standardized mean difference (SMD) of covariates and number of matched treatment subjects

Data

- Enrolled 48 subjects
- More than 700 external placebo subjects

Results

- Final model: logistic with Firth, greedy (caliper=0.8), 2:1 ratio
 - o all matched
 - SMD: mean=0.036, max=0.09
- Alternative models
 - When using caliper=0.2, three subjects cannot be matched
 - Balancing was similar in terms of SMD
- Data analysis
 - Matched data set incorporated into database
 - Comparison of drug X and Ada to synthetic placebo arm
 - Tables created through the same TFL production

Conclusions

- Drug development cost is skyrocketing and timeline is protracting.
- Data is accumulating in many disease areas
- Incorporating external data to new trial can help to accelerate drug development
- External control data has high quality
- Incorporating to substitute a control arm or create a synthetic control arm
- No free lunch
 - A smaller in-trial control arm leading to high variability
 - A synthetic control arm may bias comparison

References

Duan, Y., Ye, K., and Smith, E. P. (2006). Evaluating water quality using power priors to incorporate historical information. Environmetrics, 17, 95-106.

FDA (2019a) Adaptive Designs for clinical trials of drugs and biologics

FDA (2019b) Interacting with the FDA on complex innovative trial designs for drugs and biological products

Hobbs, Brian P., Bradley P. Carlin, Sumithra J. Mandrekar, and Daniel J. Sargent. 2011. "Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials." Biometrics 67 (3): 1047–56.

IBRAHIM, J. G.AND CHEN, M.-H. (2000). Power prior distributions for regression models. Statistical Science 15, 46–60.

Psioda M and Ibrahim JG (2019). Bayesian clinical trial design using historical data that inform the treatment effect. Biostatistics, 20, 400-415.

Neuenschwander, Beat, Gorana Capkun-Niggli, Michael Branson, and David J Spiegelhalter (2010). "Summarizing Historical Information on Controls in Clinical Trials." Clinical Trials 7 (1): 5–18.

Neuenschwander, B. Branson, M. and Spiegelhalter, D. J. (2009). A note on the power prior. Statistics in Medicine, 28: 3562-3566.

References

POCOCK, S. (1976). The combination of randomized and historical controls in clinical trials. Journal of Chronic Diseases 29, 175–188.

Psioda, M., Soukup, M. and Ibrahim J. G. (2018). A practical Bayesian adaptive design incorporating data from historical controls. Statistical in Medicine. DOI: 10.1002/sim.7897

Schmidli, Heinz, Sandro Gsteiger, Satrajit Roychoudhury, Anthony O'Hagan, David Spiegelhalter, and Beat Neuenschwander. 2014. "Robust Meta-Analytic-Predictive Priors in Clinical Trials with Historical Control Information."

Viele, K., Berry, S., Neuenschwander, B., et al. (2014), "Use of Historical Control Data for Assessing Treatment Effects in Clinical Trials." *Pharmaceutical Statistics*. 13 (1): 41-54.

Biometrics 70 (4): 1023–32.

Zhang L et al (2020) A simple approach to incorporating historical data in clinical trial design and analysis. Submitted.