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Brief Bio

@ PhD Columbia, Mathematical Statistics, 1972

@ Then, Postdoc@Imperial, BU Math Dept., Harvard Biostatistics
U of Minn. Biostatistics (Head), RAND/DC, JHU, JHU/Census
JHU, JHU/FDA (Emeritus, but not retired) Whew!

@ |BS president, editor of JASA/ACS and Biometrics
@ Considerable involvement in clinical trials

@ Lots of Bayes involvement, both methods development and applications

o Carlin & Louis (2009). Bayesian Methods for Data Analysis, 3" ed.
Chapman & Hall/CRC Press

@ Visit my vita for full information
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http://www.biostat.jhsph.edu/~tlouis/louisvita.pdf

Outline of a, somewhat grand, tour

e Examples of when to bother with Bayes
e Methods
e Applications
o Clinical
o Epi
o Policy
e Summary

I'll present a subset of the following slides
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Preamble

@ Check out these references!:?:3

@ Efron (1986)4 is a must-read. Quoting Efron, then Dennis Lindley;
Efron: 'A prime requirement for any statistical theory intended for
scientific use is that it reassures oneself and others that the data have
been interpreted fairly.”
Lindley: "The objective element is the data: interpretation of the data is
subjective, ... "

@ Two more quotes,

o Herman Rubin (1970): “A good Bayesian does better than a
non-Bayesian, but a bad Bayesian gets clobbered.”®

o Tom Louis (2019): ‘Pure’ Bayes pairs nicely with Port, but when you
leave port for the high seas of applications, some degree of impurity is
usually necessary. Bayesians who engage in important studies use the
paradigm as the aid to navigation, not as a straightjacket. The goal is to
do a good job, and one can't be (too) doctrinaire.

1Carlin BP, Louis TA (2009). Bayesian Methods for Data Analysis, 39 ed. Chapman & Hall/CRC.
2Ge|man, et al. (2013). Bayesian Data Analysis, 3 ed. Chapman & Hall/CRC.

3O'Hagan A (2019). Expert Knowledge Elicitation: Subjective but Scientific. The American Statistician,
doi.org/10.1080/00031305.2018.1518265.
4Efron B (1986). Why isn't everyone a Bayesian? (with discussion) The American Statistician, 40: 1-11.

5Reported by 1J Good.
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Confidence interval for a binomial probability

@ Confidence intervals produced by the Bayesian formalism can have excellent
frequentist performance, indeed as good or better than a ‘frequentist’ approach

@ Here's the frequentist model,
Parameter:  p = probability of an event
Data model: Y ~ binomial(n, p)
Estimate:  pfed = %7 (the MLE, the direct estimate)
@ Add the Bayesian structure,

Prior:  p is generated by a Beta(a, b) distribution with mean
w=a/(a-+ b), and ‘effective sample size:’ M =a + b

Posterior:  Beta(a + Y, b + n - Y) with mean a weighted average of
w and pfe9, thereby shrinking the latter towards the former

ﬁBayes — (1 o Dn)ll + Dnﬁfreq
@ With weight on pf, n
D, = ,
" M+ n

which increases towards 1.0 as n increases

@ Stabilize by shrinkage, but as n gets large, increase the weight on pfe?
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Beta Distributions and producing a Cl

BETA DISTRIBUTIONS BETA DISTRIBUTIONS

— beta(1,1)
— Beta(3,
o — Beta(t

— beta(1,3)

DENSITY
DENSITY

EVENT PROBABILITY EVENT PROBABILITY

Producing a CI

@ Either cut off 2.5% tails on each side or find the highest posterior density
(HPD) interval, produced by drawing a horizontal line on the posterior density
so that the resultant interval has the desired probability (e.g., 0.95)

@ HPD automatically deals with shape; the R function binom.bayes and others do
the computations
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Freq Uentist Coverage: Nominal level is 95%
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@ a=b=0.5and a= b= 1.0 work well;
for n =5, a= b = 3 performs poorly near 0 and 1

@ It's worth discussing whether all Cls for the binomial distribution be
Bayes-generated with either a=b=050ra=b=1.0

o Unless there is credible evidence for using an informative prior
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Cl after observing 0 events in n trials®’

BETA DISTRIBUTIONS

N n | lower  upper
10 0  238n

= 20| 0  266/n
i 50 0 2.85/n
00| 0  2.92/n

. 200 0 2.96/n
| 1000 | 0  2.99/n

@ Using the black curve, a horizontal line produces 0 as the left-hand limit
binom.bayes(0,n, conf.level=.95, prior.shapel=1, prior.shape2=1)
o A frequentist Cl for 0 events is similar, but 1 of n, etc. is challenging
@ When n > 100 the 95% Cl with a = b =1 is very close to [0, 3/n)

@ The ‘3’ is a threshold for the number of successes in a study replication that
would seem unusual after having observed 0 successes in the initial study

@ The sample size to ensure 95% power at p* to reject Hyp: p =0 is n = 3/p*
o To detect p* = 10~> (occupational risk) requires n = 300,000

Louis TA (1981). Confidence intervals for a binomial parameter after observing no successes. The American Statistician, 35: 154.

Manu P, Louis TA, Lane TJ, Gottlieb L, Engel P, Rippey RM (1988). Unfavuorable outcomes of drug therapy: Subjective
probability versus confidence intervals. J. Clin. Pharm. and Therapeutics, 13: 213-217
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Historical Controls

@ Data from the current experiment:

C E | Total

Tumor 0 3 3

No Tumor 50 47 97
50 50 100

@ Fisher's exact one-sided P = 0.121

@ But, pathologists get excited:
o “The 3 tumors are Biologically Significant”

@ Statisticians protest:
o “But, they aren’t Statistically Significant”
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Include Historical Data

@ Possibly, the pathologist has historical information for the same species/strain,
same Lab, recent time period with 0 tumors in 450 control rodents

@ S/he has the following table in mind:

Pooled Analysis
C E | Total
Tumor 0 3 3
No Tumor 500 47 547
500 50 550

@ Fisher's exact one-sided P = .0075
@ Convergence between biological and statistical significance

@ Important: Complete pooling gives too much credit to history, and the Bayesian
formalism should be used to structure partial pooling
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Bringing in history
@ Before seeing the current data, identify relevant experiments
@ Use the Bayesian formalism
o Control rates (6x) are drawn from a Beta(u, M)

m

—
5

N
Il

o
V() = 7”“3;‘1‘)

o Use all the data to estimate (¢, M) — (@, M)
(or to produce their joint posterior distribution)
o Use Beta(fi, M), better still mix over the full posterior
@ Female, Fisher F344 Male Rats, 70 historicaliexperiments8
Tumor ‘ N M m %
Lung | 1805 513 .022 28.4%
Stromal Polyp | 1725 16 .147 0.9%

@ Adaptive down-weighting of history

@ Judgment is required as to what historical data are sufficiently relevant

Tarone RE (1982). The use of historical control information in testing for a trend in proportions. Biometrics
38: 215-220.
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Reverend Thomas Bayes

To find a method for:

“... the probability that an
event has to happen, in
given circumstances...”

Bayes Rule:
Pr(6]Y) o« Pr(Y|6)Pr(6)

© http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Bayes.html
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Bayes's grave

Non-conformist section of Bunhill Fields, London




Bayesian Analysis

1. Design a study & collect data

2. Specify a statistical model
@ The ‘data model’ (the likelihood)
@ A prior distribution and possibly a hyper-prior
Bayesians need to make these explicit

3. Use Bayes' theorem to produce the Posterior Distribution

4. Do something with it, possibly structured by a loss function

(-..)%: Posterior Mean

| ... |: Posterior median

0/1 4+ ¢ X volume: Tolerance Interval (Cl)
0/1: Hypothesis Test/Model Choice

O O O O

@ Steps 1 & 2 depend on scientific/policy knowledge and goals
@ Steps 3 & 4 are governed by the rules of probability
@ Step 3 doesn’t depend on what you are going to do in Step 4
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Bayesian Analysis

1. Design a study & collect data

2. Specify a statistical model
@ The ‘data model’ (the likelihood)
@ A prior distribution and possibly a hyper-prior
Bayesians need to make these explicit

3. Use Bayes' theorem to produce the Posterior Distribution

4. Do something with it, possibly structured by a loss function

o (...)% Posterior Mean

o | ...|: Posterior median

o 0/1 + ¢ X volume: Tolerance Interval (Cl)

o 0/1: Hypothesis Test/Model Choice

@ Steps 1 & 2 depend on scientific/policy knowledge and goals
@ Steps 3 & 4 are governed by the rules of probability

@ Step 3 doesn’t depend on what you are going to do in Step 4

Evidence, then decisions ‘
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Bayes Infographic (v

(‘paras’ are parameters)

@ The go-forward model:

-

@ Fundamental Bayesian computation: Condition on the observed data and
update the probability distribution for the paras

@ The go-back model:

Observed Data == Posterior: paras | Data ==
paras ~ G(- | Y) =

@ With f and g density or mass functions, it is always the case that;

Il

Y ~ F(y | paras)

Inferences, e.g., E(paras | Y) ‘

I

(Posterior Odds) = (Prior Odds) x (Likelihood Ratio)

g(paras| Y)  g(paras) « f(Y | paras)

g(paras* | Y) g(paras*)  f(Y | paras*)
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Bother with Bayes when you want (Fv)

®© © 6 6 6 o

Excellent Bayesian performance

Excellent Frequentist performance

o

Use priors and loss functions as tuning parameters

To strike an effective Variance/Bias trade-off

To propagate full uncertainty

To design, conduct and analyze complex studies

To address non-standard goals such as ranking

Sometimes it isn’t worth the bother

Sometimes you are (almost) forced into it

(o}

O O O O O O

To incorporate prior information (duh)

To formally combine evidence

To analyzing complex systems & address complex goals

To develop spatial and network models

To deal with a small number of clusters

To accommodate complex measurement error

To handle complex ......

To avoid Rod Little's ‘inferential schizophrenia’ in design-based analyses®

9Little RJ (2012). Calibrated Bayes: an alternative inferential paradigm for official statistics (with discussion).
Journal of Official Statistics, 28: 309-372 .
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Design

Everyone is a Bayesian in the design phase
All evaluations are ‘preposterior,’ integrating over both the data (a frequentist
act) and the parameters (a Bayesian act)

A frequentist designs to control frequentist risk over a range of parameter values
A Bayesian designs to control preposterior (Bayes) risk
Bayesian design is effective for both Bayesian and frequentist goals and analyses

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Bayesian Design to Control Frequentist Cl Length

@ Variance of a single observation: o2

@ L is the desired maximal total length (distance from the low endpoint to the
high endpoint) of the ClI

@ For two-sided coverage probability (1 — «):
2 o2
n(O’, L7a) = 4zl—a/2 (Z)
@ If we don't know &2, then Cl length is, itself, a random variable and uncertainty
related to it must be accommodated

@ To find a suitable sample size, we can,

o do a series of ‘what ifs’ or a ‘worst case’
o put a distribution on o2 (ideally developed from other, similar studies)
and use it to incorporate uncertainty in its value
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Frequentist Cl Length: The Bayesian approach

@ Background data or prior elicitation provide a prior distribution (G) for o
@ Using G, select the sample size (n) to satisfy either,

Ec(Cl length|n) < L
@ Or, more relevant for a single study,

prc(Cl length > L|n) < ~

Similarly, for testing find n so that,

prc(Power < 0.80|n) < ~

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Cl Length: sample size factor for a prior coefficient of
variation (7)) relative to knowing o2 (1 = 0)

SAMPLE SIZE FACTOR

80

60

40

20

SAMPLE SIZE FACTOR FOR A LOG NORMAL VARIANCE

SAMPLE SIZE FACTOR FOR A LOG NORMAL DISTRIBUTED VARIANCE

SAMPLE SIZE FACTOR

)
8
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The basic Gaussian/Gaussian model

Prior: 0~G = N(u, %)
Sampling distn.:  [Y | 0] ~f = N(§, 0?)

Marginal distn.: fe = N(u, o®+72)

@ For known (1, 72,02), the posterior is also Gaussian:

E(OlY) = Bu+(1-B)Y=p+(1-B)(Y—pu)
V@lY) = (1- B)o?=Br?
0_2
B = o=

@ Shrinkage & variance reduction

@ Larger o2 produces greater shrinkage
@ Larger 72 produces less shrinkage

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Nchelenge Zambia Malaria Prevalence: Independent RE model with covariates

Residuals shrink towards 0

Logistic Wit Independent Random Efct

Pyt g 8541 s
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Basic Estimates & Confidence intervals
You might not need to bother

@ Estimate a population mean based on an iid sample

o= )?n
Cl: Xn 4 Z6/+/n
@ Yes, it's Bayes with a flat prior, but so what?

@ A frequentist can use a BC, Cl to (almost) avoid parametric assumptions

So, why bother with Bayes?

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Not so basic: what if we know 1 > 0

@ The maximum likelihood estimate is ﬁm/e = max()?n.,O), but there are
likelihood-based including Bayesian alternatives that can perform better

@ So, consider a Bayesian Cl with either a flat (likelihood) or an informative prior
on [0, c0)

@ The posterior mean ({iP™) is a worthy competitor to the MLE,

oo
uP™ = E(p | data) = / u-g(u| data)du
0

@ Good estimates strike an effective variance/bias trade-off and so have small
mean squared error (MSE)

MSE = E( — p)? = V() + (BIAS)?

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER 24



Unrestricted and Restricted Posterior Distributions

Unrestricted Restricted

GAUSSIAN POSTERIOR: UNRESTRICTED GAUSSIAN POSTERIOR: RESTRICTED

03

DENSITY
2

bensITY
>

UNKNOWN MEAN UNKNOWN MEAN
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MSE for i and jiP™ when the parameter is > 0

MSE: Black = x*+, Blue = FlatBayes

12

MSE

T T T
2 3 4

True mean

°
@

@ If you want to improve MSE for the Bayes estimate near 0, use a prior that gives
more weight near 0

@ No Free Lunch: You pay for this with degraded performance for large u
o If the prior is HN(0,72), MSE will increase quadratically
o For a fix, use something like that in'®

10Eber\y L, Louis TA (2004). Bayes/frequentist compromise decision rules for Gaussian Sampling. J. Statistical
Planning & Inference, 121: 191-207.
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Multiple draws, compound sampling
Empirical Bayes (EB) and Bayes empirical Bayes (BEB)!

O1,...,0k iid  N(u,7%)
[Yi [6k] ind  N(6x,0%)
Be | Yil ~ N(u+ Q=B (Ye—n), (1 Bi)ap)
2

o

Bk = 5t

k 0',2( + 72

@ ‘Shrinkage’ and Variance Reduction
o For unequal cri, posterior variance flattening
@ Generalizes to complicated models: regression structure in the prior, spatial or
network models, non-conjugate priors
o Need to use MCMC to do the computations
@ Generalizes Hp : 61 = ... = 0k, by posing that the 6, come from the same

distribution rather than all being equal
o 72 =0 produces the usual Hy

11Eﬂ'on B (2019). Bayes, Oracle Bayes, and Empirical Bayes (with discussion). Statistical Science,
34: 177-235.
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Objectivity conferred by compound sampling

Multiple draws from the prior provide information on it
— Empirical Bayes or Bayes empirical Bayes (BEB)

When ai =o?
po= Y
1 _
S = eV
k
7A_2 — (52 _ 6_2)+

#2 measures ‘unexplained variation’ not necessarily ‘inexplicable variation’

o A more general X3 mean model can reduce 72 and move direct
estimates closer to the unit-specific prior mean

o However, saturating the mean model gets back to the direct estimates
and a ‘sweet spot model’ is most effective

Unequal oi requires recursion to produce the marginal MLE

BEB (hyper-prior Bayes) brings in the uncertainty in the prior parameters by
integrating over the posterior hyper-prior, generally, requiring MCMC or other
computer-intensive approaches

Subjectivity/Judgment required in choice of the data model, form of the prior,
relevant data, ...

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Age-specific rate of bone loss'?
Woman /age—specific, slope estimates

@ Positive values are ‘loss’ and a positive trend
indicates a loss rate that increases with age
@ Short follow-up, so estimated slope and residual variance are imprecise
@ Empirical Bayes (EB) calms variation and improves woman-specific predictions

Woman /age-specific estimated slopes

Individual estimates EB estimates
00700+
.
R . s
E 0.0350 .
8 omsd £
- M
] : %
3 = . . . . i
g -oorod] 8
S H
&
H
T T y T T —T— T &
o & 12 m 2 30 38 42 48
4 tyears)
Figure 2. individual least squares estimates of rate of bone loss i lyears)
by vs. t, where the 1, are suitably chosen points in the follow-up Figure 4. Individual empirical Bayes estimates of rate of bone loss

intervals. b, versus ti.

12Hui, Berger (1983). Empirical Bayes estimation of rates in longitudinal studies. JASA, 78: 753-759.
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Stabilizing woman-specific, estimated residual variance

@ Directly estimated residual variance estimates are shrunken towards a common
value; the degree of shrinkage depends on the precision of the direct estimate
o Lower precision produces greater shrinkage

@ The distribution of the shrunken estimates isn't chi-square, but a fully Bayesian
analysis uses the joint posterior distribution of all parameters to produce
woman-specific future predictions, prediction intervals, and other inferences that
are more precise than using only each woman'’s data

@ This full probability processing is an advantage of the Bayesian approach

General Point: In this and other contexts, there are three analytic strategies;
Lump: They are all women, so combine the data and use the population-level slopes
and residual variances for each woman
Split: Each woman is absolutely unique, so infer/predict for each woman using only
her data

Compromise: Each woman is unique, but they are all women, so compromise between ‘Lump’
and ‘Split" with the amount of shrinkage towards population values depending
on precision of the woman-specific estimates
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The general hierarchical model

6 = A vector of parameters
©1n ~ g(8n) [Priorn] eg., iid b
[Y|6] ~ f(y|®) Likelihood
felylm) = [ Fs1O)e(elmde  [Marginalln]
f(y|0)g(0
g@ly,n) = f(y16)e(61m) [Posterior|y, n]
fe(yln)

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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The general hierarchical model

6 = A vector of parameters

[0|n] ~ g(@n) [Prior|n], eg., iid 0,
[Y|6] ~ f(y|@) Likelihood

felylm) = [ Fs1O)e(elmde  [Marginalln]
g@ly,m) = % [Posterior|y, 1]

[mlh ~ h(n) Hyper-prior

g0 h) = /g(9|n)h(n)d17 [Prior|h], e.g., exchangeable 6
g6ly) = /g(0|y,n)h(n|y)dn Full Posterior

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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The general hierarchical model

6 = A vector of parameters

0n] ~ g(8n) [Priorn], eg. iid Oy
[Y|6] ~ f(y|®) Likelihood

felylm) = [ Fs1O)e(elmde  [Marginalln]
g(ly,n) = % [Posterior|y, 1]

[mlh ~ h(n) Hyper-prior

g0 h) = /g(0|n)h(n)d17 [Prior|h], e.g., exchangeable 0
g6ly) = /g(0|y,n)h(n|y)dn Full Posterior

@ Bayes empirical Bayes (BEB) combines evidence by integrating wrt h(nly),
importing uncertainty in 1

@ Hyper-prior Bayes is just ‘Bayes’ with a different prior

The model can be enhanced via covariates in the prior

@ Can add a hyper-hyper-prior, ..., but | leave that to epistemology
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Addressing non-standard and otherwise challenging goals

Bayesians have a corner on the market,
at least wrt to procedure-generation

@ Regions for parameters
o Bio-equivalence & non-Inferiority
o Inherently bivariate treatment comparisons
o Alternative language ballots
@ Ranks and Histograms
@ Non-linear models
@ Adaptive design
@ Threshold utilities, for example in allocating federal funds

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Being in a complex region (R)
@ Section 203 of the U. S. voting rights act mandates that a state or political
subdivision must provide language assistance to voters,

o if more than 5% of voting age citizens are members of a single language
minority group

o and do not ‘speak or understand English adequately enough to participate
in the electoral process”

o and if the rate of those citizens who have not completed the fifth grade is
higher than the national rate of voting age citizens who have not
completed the fifth grade

A political subdivision is also covered,

o if more than 10,000 of the voting age citizens are members of a single
language minority group, do not ‘speak or understand English adequately
enough to participate in the electoral process,”

o and the rate of those citizens who have not completed the fifth grade is
higher than the national rate of voting age citizens who have not
completed the fifth grade.

@ Every 5 years the Census Bureau must transmit determinations to the
Department of Justice
@ Bayesian structuring is essential for combining evidence, stabilizing estimates
and computing summaries such as,
pr(0 € R | data)
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Comparing two treatments: New (N) vs Current Standard (S)

Frequentist
@ Do a hypothesis test or Cl and make a decision
Bayes
@ Regions for the latent truth: N better than or equal to S; N worse than S
o Can also include an indifference region
Find the posterior probability of regions and make decisions
Using 0 as the threshold, decide in favor of N, if pr(N — S > 0 | data) > 0.98

Can find a sample size that controls the probability of mis-classification

Can adjust the prior distribution to satisfy a frequentist criterion such as, for a
specific (N - S) < d <0,

pr(decide in favor of N | d) < 0.05

@ However, if you trust the original prior, use it!
o Compute frequentist properties, but don't rigidly adhere to them
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Non-inferiority assessment

@ (Inferior, nonlnferior, Superior ) regions for (N — S) based on the true,
underlying treatment relations

o For a cure rate, ‘Superior’ will be positive values
o For a death rate, ‘Superior’ will be negative values

@ Use the posterior distribution to compute the probability of each region and use
these to inform decisions
@ Conduct sensitivity analyses by varying the,

o nonlnf threshold
o prior distribution, e.g., (pessimistic, equipoise, optimistic)
o data model

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Framework for three treatment, non-inferiority assessment

Decision Regions

R1: Current better than Control, New worse than Control

R2: Current better than Control, New better than Control, but ‘inferior’

R3: Current better than Control, New better than Control and ‘non-inferior’

R4: Current better than Control, New better than Current

R5: Current worse than Control, New better than Current and better than Control
R6: Current worse than Control, New better than Current but worst than Control
R7: All bets are off: Current worse than Control, New worse than Control

@ Boundaries are defined by the true, underlying attributes
(treatment effects, side effects) with no account for statistical uncertainty

@ The Bayesian posterior distribution provides a window to this latent world

o R2 accommodates differential side-effects,
o If the new and current have similar side-effects, R2 can be empty

@ Regions are best determined via a utility function
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The seven regions (R1-R7)

REGIONS FOR TREATMENT DIFFERENCES REGIONS FOR TREATMENT DIFFERENCES
Absolute non-inferiority Relative non-inferiority

0.5
I

Delta2: New - Current
o.

Delta2: New - Current
o.

Deltat: Current - Control Deltat: Current - Control

pr(Region | data) can be obtained no matter how complicated the region, either
by computation or simulation {e.g., Markov Chain Monte Carlo (MCMC)}

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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T CAN'T BEUEVE SCHOOLS
ARE STiL. TEACHING KIDS
ABOUT THE NULL RYROTHESIS.

)
I REMEMBER READING A BIG

STUDY THAT CONCLUSVELY
DISPROVED IT JMEARS AGO.

il

From xked
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Formal approach to region occupancy

@ Inferring into which of several, possibly multivariate, regions true, underlying
treatment effects fall is a fundamental goal

@ |Ingredients include formulating the decision problem, optimizing the decision,
evaluating properties, and determining a sample size that achieves desired
Bayesian (or frequentist) goals

@ Here is a Bayesian approach, focusing on a scalar parameter (e.g, the difference
in treatment effects) and two regions

o A more comprehensive modeling entails a joint prior distribution for all
parameters, producing a joint posterior distribution for them, then
extracting the posterior for the treatment effect or effects

@ We introduce notation for a three region categorization; with D a generic region,

(Do, D1, D) = (‘Inferior’, ‘nonlnferior’, ‘Superior’).

@ And, produce two regions by combining D; and D>,

(Do, D1:2) = (‘Inferior’, ‘Superior or nonlinferior’)

D12 = D1 U Ds.
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Notation for the two region case

0 = Parameter of interest (e.g., treatment effect)

G = Prior distribution for 6

D = Regions defined by values of 6
X, = Data as a r.v., x, observed value
) = The data likelihood.
d(xn) = 0 or 1 according as the decision is that 6 € Dy, or § € D12
) = Loss function, ¢ >0

)

= the posterior distribution of region membership,

_ _  Jp,, flxn | 0)g(6)d0
m(xp) = pr(0 € Do | xp) = /D1;2 2(0 | x)do = m
J3° f(xn | 0)g(0)dO

= 24— "— —  when Dyp = [d, c0).
J2% f(xn | u)g(u)du
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Decision Structure

@ Decisions (inferences) are structured by a loss and resulting risk function

@ |If the goal is to minimize the probability of incorrect decision, then the obvious
(and correct) decision rule is to decide 6 € Dy.o, if m(x,) > 0.5

@ However, the consequences of declaring that 8 € D;i.» when in fact 6 € Dy can
be different from those for declaring that 6 € Dy when in fact 8 € Dj.», and the
following loss function addresses this more general case

@ With 6 =0 or 1 according as the decision is € Dy or 6 € Dy.2,

@ Loss = 0, when 8 is correctly classified
@ Loss = 1, when § = 0 is an incorrect classification
@ Loss = c >0, when § = 1 is an incorrect classification.

@ Specifically,

L(3,0,c) = c-dlipepyy +{1— 0} 0en;,)

@ The decision depends on data, producing,

L(6(xn),0,c) = c-d(xn)l{pepyy + {1 = (xn)}0eD,0}
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Posterior Bayes Risk (conditional expected loss)

RG (xn, 6(xn), €) Ec{L(5(xn), 0, ) [ xn}

¢+ 8(xn) {1 = m(xn)} + {1 — 8(xn) }7(xn).

@ The minimizing §(xn) is,

@ So, decide,
o 0 € Dy, if w(xp) >7* =c/(1+c)
o 6 € Dgy otherwise
@ This formulation can justify a 7* value, where c is the relative cost of
mistakenly declaring 6 € Dj.p versus mistakenly declaring 6 € Dy
@ For example, justifying 7" = 0.98 requires ¢ = 49, a very (very) large relative
cost of a Type | versus Type Il error

o ¢ =49 would be an extreme relative cost in many contexts

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER 42



Optimal posterior and pre-posterior risk (Fvi

@ Using 8(xn), the optimal posterior risk is,

R (xn, 5(Xn)v c) = min[n(xn), c- {1 — m(xn)}]
_ w(x),  w(xp) < 7F = 15
T e o nla)), wle) > T = o

@ The risk with no information (no data, only the prior) is,

R(G (¢) = min(m,,c-{1—m})

@ The pre-posterior, optimal risk (Bayes Risk) is the expectation using the
marginal distribution of X,.

Re(c) = Eg{min[x(X,),c-{1—m(X)}]}

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Finding the required sample size (v

Pre-posterior risk (equation 1) structures finding a sample size that produces
acceptable performance

Evaluation can be by computation or simulation, using the marginal distribution
of X, (the distribution produced by integrating over the prior distribution)

For the Gaussian model with known variance, X, is sufficient, and with
6 ~ N(u,72), [%n | 8] ~ N(8,%/n), the posterior distribution of 8 is,

0_2
g0 | %) = N{N+(1_Bn)(;(n—ﬂ)v(l_Bn)*}

n

o2

B, = e ——
o2 + nt2

For D1, = [d,0) and ®(-) the normal cdf,

o) - 17¢{d—u;<1—8n)(?—m} :¢{;A,+<1;Bn)<;n—:>—d}
21— 6y 21— 6y

1 =0 is ‘equipoise’ producing a priori a 50/50 chance of being in Dy or D;.>.
u = 0.675 is ‘optimistic’ producing a priori pr(Di:2) ~ 0.63.
u = —0.675 is ‘pessimistic’ producing a priori pr(D1.2) =~ 0.37.
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Results (via computation, not simulation)
Sample Size (n)

Scenario 10 20 50 100 300
1 = 0 (equipoise)

c=1,7* =0.50 18 13 9 6 4
c=3,m*=0.75 20 22 14 10 6
classification error 26 19 12 9 5
c=49,7* =0.98 48 43 34 24 15
classification error 48 43 32 24 15

1 = 0.675 (optimism)

c=17*=0.50 11 8 5 4 2
c=3,7m=0.75 22 16 10

classification error 17 13 8

u = —.675 (pessimism)

c=1,7n*=05 10 5
c=3,7=0.75 14 8

classification error 13 7

100 X pre-posterior risk: Rows led by values of ¢ and 7* report risk computed
with the c—value used to produce the optimal rule; rows led by ‘classification
error’ report performance of the same rule, but evaluated with the (1,1) loss

function. All entries are for d = 0,02 = 4,72 = 1.
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Comments (Fv)

1 = 0 is ‘equipoise’ producing a priori a 50/50 chance of being in Dy or Dj.».

1 = 0.675 is ‘optimistic’ producing a priori pr(Di:2) ~ 0.63.

u = —0.675 is ‘pessimistic’ producing a priori pr(D1.2) =~ 0.37.

The classification rule based on ¢ = 1, minimizes classification error and has risk

smaller than the classification error associated with a rule generated with a
different c—value, for example, 25.7 > 17.9;32.4 > 8.8.

Not surprisingly, classification error increases with ¢ because the optimal rule
gives increasingly discrepant costs to the two types of error.

For a given scenario, the optimal risk for the risk function used to compute the
rule and the classification error are quite close, with the discrepancy decreasing
as c increases.

The method can be used to find the necessary sample size, either by computing
for a fine grain of n—values, and identifying the sample size that works, or
implementing an interval-halving search

Results show that for the risk to be below 10% for (1 = 0, ¢ = 3) requires
n ~ 100, producing a risk of 10.3 and a classification error of 8.9.
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Robustness evaluation (Fv

In the foregoing m(x,) is generated by the working model (e.g., the assumed prior G and data model f)
If it is different from the true model, it generates Regret relative to the truly optimal rule

Regret can be evaluated using equation (1) with the decision rule determined by the working model, but
the distribution for x, and the function 7(x,) produced by the true model,

Regret =  (Working model risk) - (Bayes Risk)

Or, alternatively compute

Regret Working model risk
= — 1.0 = RelRisk — 1.0.

Relative Regret = =
Bayes risk Bayes Risk

With 7 (x,) the posterior under the true model and §(x,) the optimal rule for it, E computes under the
true model for X,

Regret E(min[7(Xp), ¢ - {1 — ©(Xn)}]) — E(min[#(Xp), c - {1 — #(Xn)}]) >0

= E{RX0)n(xp)<n* <X} + (= FX)) {5 (Xn)<m* <m(Xn)} }
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Frequentist risk and regret (v

@ Frequentist risk and regret is a special case with 6 = 6 fixed at a single value (equivalently, a prior with a
point mass at 6p)

@ For this working model, the optimal rule is §(x,) = ItogeD1 2}

@ For example, let ¢ = 1, D1.» = [0, 00) and @ > 0, and a working model wherein
7(xp) > 0.5 <= X, > 0. Then, the regret is the probability of mis-classification, and with 6y > 0 we
have, pr(m(x,) < 0.5 | 6g) = pr(xs < 0| 6pg) = & (—@) , which is (1 - Power).

@ With 6g = 0, c = 1, the Type | error is always a = 0.5. For a general ¢, & = 1/(1 + ¢) and so to
produce Type | error = ag, use ¢ = (1 — o)/ xp-

@ This relation shows that selecting the nominal g can be justified by the loss function in equation (1). For
ag = 0.05, ¢ = 19 (= .95/.05), a 19:1 penalty for false rejection relative to false non-rejection.

@ Going in the other direction, 7*(c) = 0.98 produces ¢ = 49, a large penalty.

@ In general, the Type | error associated with an informative prior and a loss function determined value of ¢
will not be close to a traditional ag, and forcing equality by changing ¢ will degrade Bayesian performance
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Bayesian Monitoring: The BLOCK HF trial'®

@ Intention-to-treat was the primary analysis for all outcomes

@ The trial used an adaptive Bayesian design allowing a maximum of 1200
patients, featuring sample size re-estimation and two interim analyses with
pre-specified, adaptive rules for stopping enroliment or terminating follow-up

@ These rules addressed patient safety, futility, and eventual trial success

@ The safety stopping rule, assessed at each interim analysis, was based on the
posterior probability of an increased risk of primary endpoints in patients with
BiV pacing relative to RV pacing

@ Enrollment and follow-up termination was based on the predictive probability of
passing the primary objective (PPg) or on futility (PPR), projected to when all
subjects had been followed for at least 12 months

@ Low information priors were used

13Curtis et al. (2013). Biventricular Pacing for Atrioventricular Block and Systolic Dysfunction. NEJM, 368:
1585-1593.
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BLOCK-HF decision table

Decision Boundaries

Conclude | Conclude Determine Conclude that Stop study for
objective that sample | that sample sample size must safety
ismetand | sizeis size is be increased in
stop study | sufficient insufficient increments of
early to continue | but elect not 175
to increase
sample size
First PPy>099 | 0.90<PP, | PRR>0.9 PPy < .90 and P (6>
Interim <0.99 PRR=<09 0O|data.prior) =
Analysis 0.90
Sample N/A 090<PP, | PRR>09 PPy < .90 and N/A
Size Re- PRR <09
estimation
Phase
Second PP;>0.99 | If neither the outcome in column 2 nor the P(6>
Interim outcome in column 6 occurs, then the study will 0|data.prior) >
Analysis continue with the current sample size. 0.90
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Post-hoc, Bayesian Monitoring of the CPCRA-TOXO trial4 15,16
(CPCRA = Community Programs for Clinical Research on AIDS)

@ Eligibility
o Either an AIDS defining illness or CD4 < 200
o Or, a positive titre for toxoplasma gondii

@ Originally designed with four treatment groups

o Active & placebo clindamycin, 2:1
o Active & placebo PYRImethamine, 2:1

@ The clindamycin arm was stopped after a few months,
so consider PYRI vs Placebo

14Cha|oner, Church, Louis, Matts (1993). Graphical elicitation of a prior distribution for a clinical trial. The
Statistician, 42: 341-353.

15 . . . o o . .
Carlin, Chaloner, Church, Louis, Matts (1993). Bayesian approaches for monitoring clinical trials, with an
application to toxoplasmic encephalitis prophylaxis. The Statistician, 42: 355-367.

E Brownstein, Louis, O'Hagan, Pendergast (2019). The role judgement in statistical inference and
evidence-based decision-making. The American Statistician, doi.org/10.1080/00031305.2018.1529623.
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After-the-fact analysis of the Toxo Trial'’

The DSMB monitored it in real time

@ Elicited priors from three HIV/AIDS clinicians, one PWA conducting AIDS
research, and one AIDS epidemiologist

@ Used the Cox model and adjusted for baseline CD4

@ ‘Stopped” when the posterior probability of benefit or the posterior probability
of harm got sufficiently high

@ Used a variety of prior distributions, including an equally-weighted mixture of
the five elicited priors

17 . L . . . S .
Jacobson, et al. (1994). Primary prophylaxis with pyrimethamine for toxoplasmic encephalitis in patients
with advanced human immunodeficiency virus disease: Results of a randomized trial. The Journal of Infectious
Diseases, 169: 384-394
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Elicitation

Asked about potential observables

@ P = pr[event in two years]
@ Py = best guess for the placebo
o mode, median, mean

@ Then, distribution of [Py | Po]

o percentiles
o draw a picture

@ Then, convert to a Cox model-relevant parameter:

0= [31 = |og(1 — Po) — Iog(l — Ppy,,')

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Elicited Priors
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@ Red line is at the best guess for the two-year rate under placebo
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Actual TOXO Monitoring

@ At its meeting on 12/31/91, the DMC recommended stopping due to:

Futility: The pyrimethamine group had not shown significantly fewer
TE events, and the low overall TE rate made a statistically
significant difference unlikely to emerge

Harm: There was an increase in the number of deaths in the
pyrimethamine group relative to the placebo
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Mixture prior = Posterior Probabilities of regions

(Bayes with the mixture prior takes longer to stop)

E = exact; N = normal approximation; (L'="likelihcod

N\,
'\,\ P{peta_1 <log(.75) | R}

2z
2 34
<4
s
P{beta_1>01R}
o
S
N _ -
:_———V
< |
5
T T T T
0 (1/15/91) 11 (713191) 38 (12/31/91) 60 (3/30/92)

cumulative # of events (calendar date)
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Observations

@ The elicited priors are very far from the eventual data because elicitees believed
that TE was common in the patient population and Pyrimethamine would have
a substantial prophylactic effect

@ Consequently, the likelihood-based (‘flat prior” Bayes) analysis gave an earlier
warning than did the Bayesian assessments due to,

High: pr(6 > 0 | data) & Low: pr(6 < log(0.75) | data)
Likely Harm Unlikely Benefit

@ Eventually, the data overwhelmed the elicited priors
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Observations

@ The elicited priors are very far from the eventual data because elicitees believed
that TE was common in the patient population and Pyrimethamine would have
a substantial prophylactic effect

@ Consequently, the likelihood-based (‘flat prior” Bayes) analysis gave an earlier
warning than did the Bayesian assessments due to,

High: pr(6 > 0 | data) & Low: pr(6 < log(0.75) | data)
Likely Harm Unlikely Benefit

@ Eventually, the data overwhelmed the elicited priors

If the elicited priors had been used in the actual monitoring,
would it have been ethical to wait so that these representatives
of PWASs, clinicians and HIV/AIDS researchers were convinced?
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Prior partitioning: Backwards Bayes

Motivated by Mosteller&Wallace'®, Carlin&Louis'® consider identifying prior
distributions that in the light of observed data would lead to various decisions,
using the CPCRA/TOXO trial?® as an example
Partitioning uses the Bayesian framework to put bounds on priors leading to
specific decisions; a stakeholder can decide if the boundaries are so extreme in
one direction that the decision is the same for most priors

o This is ‘backwards Bayes’

The approach is similar to threshold utility analysis and in the same spirit as
sensitivity analysis for non- or weakly- identified parameters

Partitioning can be completely unconstrained, or restricted by moment or
percentile restrictions, or based on regions for parameters in a parametric prior

‘Pure’ or nearly pure Bayesians find this use of the Bayesian formalism close to

apostasy, but it can be effective in quantifying the strength of evidence provided

by a data set
The following figure display regions, conditional on the observed data, where

there is or is not a prior distribution that permits or does not permit rejecting Hp

18 Mosteller, Wallace (1964). Inference and Disputed Authorship: The Federalist. Addison—Wesley.

Carlin, Louis . (1995) Identifying prior distributions that produce specific decisions, with application to
monitoring clinical trials. In, Bayesian Analysis in Statistics and Econometrics: Essays in Honor of Arnold Zellner
(eds. D Berry, K Chaloner, J Geweke), 493-503. Wiley, New York.

Jacobson, et al. (1994). Primary prophylaxis with pyrimethamine for toxoplasmic encephalitis in patients

with advanced human immunodeficiency virus disease: Results of a randomized trial. The Journal of Infectious
Diseases, 169: 384-394.
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Prior tail area regions where there is/(is not) a prior

distribution that permits rejecting Hy: 6 = 0
(Conditional on the TOXO trial data)

1.00

av

273

0.00

Region for which there exists a prior that
permits stopping to reject Hp : 6 =0

Region for which no such
prior exists

.635 1.00

aL

® a = prprior{e < log(0.75)}; ay = prprior(0 > 0)
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Priors: On what? (and consequences)

@ S(t) = pr(event time > t) ~Beta(1,1) (flat)
@ If S(t) = S(t|\) = e,
o Prioron A = 7% log {S(t | \)} (exponential with hazard t)
o Prior on S(2t) = prior on S?(t) {is Beta(%, 1)}
@ Going the other way, a flat prior on A induces an improper prior with density
proportional to % on §=e At
@ Etc.

@ Morals:

o Explore consequences of priors
o Elicit priors for features that an expert might know something about
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Prior for two studies

@ Have two studies, each with a treatment effect wrt independent comparators
that are statistically identical

@ (01,02) = treatment effects for studies 1 and 2, with ‘1’ preceding ‘2’
o The 0s could be log(odds)

01+ 6 5— 02 — 01

2 2
n = the average treatment effect
d = the between study difference in treatment effects
066 = n-— 6, 6= n+ )
@ Priors n o~ (/L,T2), 0~ (0752)
cov(01,02) = cov{(n—3),(n+8)}=77—¢
72 g2
p=cor(f1,02) = m

@ If 72 # €2 (61, 62) are correlated, and information on 6; produces an updated
prior for 62 even though there is no direct information

@ A small € allows § to be stochastically small (similar treatment effects) while
retaining appropriate uncertainty on 7
o For binomial responses, need to use MCMC, but we can do that!
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Don't trust your intuition

@ Shrinkage ‘towards the mean’ can be
o 'Away from’ if the distribution is multi-modal, univariate
o 'Away from’ or ‘beyond’ when evaluating the univariate consequences of
bivariate shrinkage
o ‘Almost anything’ for models with correlated random effects
@ Here are health services, multivariate measurement error, and malaria prevalence
examples

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Don't trust your intuition
Multivariate Measurement Error: Simulation example
@ X; and X, are vector regressors

o For example, one coordinate is the exposure of interest and the other is a
potential confounder, or data on 6 dietary components

@ Measurement error, especially correlated error, can confound confounding
adjustments and standard measurement error adjustments

@ Formal modeling appropriately accounts for the measurement error process,
commonly producing non-intuitive adjustments

@ Information on the joint measurement error distribution is necessary

Coefficients (x10%)

Regressor | Unadj. Univ adj.  Mult. adj. True
sodium 7 19 23 21
potassium 7 14 -20 -15
calcium 3 7 11 11
-19 -30 -31 -30
903 1474 1528 1528
bmi 1348 1443 1645 1657

’ Measurement Error: High, , Low

@ De-attenuation AND crossing 0
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Nchelenge Zambia Malaria Prevalence: Independent RE model with covariates

Residuals shrink towards 0

Logistic Wit Independent Random Efct

Pyt g 8541 s
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Nchelenge Zambia Malaria Prevalence: Conditional AutoRegressive model with covariates

Residuals can cross over 0

Logitc With CAR Random Effct

Peptral gl 5% 1l s

et

B
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Informative sample size in Bayesian analysis

The deck may be stacked agamst h| h-variance units
e The posterior mean (PMy) for a Gaussian/Gaussian, Bayesian model is:

PMy = BiXkB+ (1 By) Yk
By o/ (o +7%)
a weighted average of the direct estimate (Y}) and a regression prediction
(XxB) with larger By for the relatively unstable direct estimates

~mle . . . . . . .

° ,Bme gives more weight to the units with relatively stable direct estimates; the
high By units that ‘care about’ the regression model have less influence, and if
the model is mis-specified, PM will be unfair to them

e Giving them relatively more weight will pay variance, but can improve MSE?!:%2

21Jiang, Nguyen, Rao (2011). Best Predictive Small Area Estimation. JASA, 106: 732-745

Chen, Jiang, Nguyen (2015). Observed Best prediction for small area counts. Journal of Survey Statistics
and Methodology, 3: 136-161.
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Informative sample size in Bayesian analysis

The deck may be stacked agamst h| h-variance units
e The posterior mean (PMy) for a Gaussian/Gaussian, Bayesian model is:

PMy = BiXkB+ (1 By) Yk
By o/ (o +7%)
a weighted average of the direct estimate (Y}) and a regression prediction
(XxB) with larger By for the relatively unstable direct estimates

~mle . . . . . . .

,Bme gives more weight to the units with relatively stable direct estimates; the
high By units that ‘care about’ the regression model have less influence, and if
the model is mis-specified, PM will be unfair to them

e Giving them relatively more weight will pay variance, but can improve MSE?!:%2

Hospital Profiling

e Practice makes perfect: Small hospitals may have poorer performance than
larger, for example their performance for riskier patients is worse, and giving
more weight to the higher volume hospitals when estimating the risk-adjustment
creates some unfairness

Small Area Estimates (SAEs) & Subgroups

e The true regression slopes may depend on population size, and
predictions/inferences for the smaller domains will be degraded if 5 is the MLE

21Jiang, Nguyen, Rao (2011). Best Predictive Small Area Estimation. JASA, 106: 732-745

Chen, Jiang, Nguyen (2015). Observed Best prediction for small area counts. Journal of Survey Statistics
and Methodology, 3: 136-161.
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MSE Comparisons

mmle vs mMssBias vs ap: compromise

e Compromise: agptX MMLE + (1 — agpt) x ObservedBestPredictor

e aopt minimizes MSE(«) as a function of the estimated SSqbias increment
associated with mmle weights relative to mMSSbias weights:

A= 3 (élr(nm/e _ @pr>2

k

e For the Gaussian model, assuming (incorrectly) that the By don't change

R L LN s
k
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Gaussian/Gaussian (best case for MMLE)

0.10

0.08

P~ COF(()k, nk)

n ~ log—uniform

n ~ 2 point discrete dist.
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Ranking: A non-standard goal
Ranking Standardized Mortality Ratios, SMRs

SMR — observed deaths
expected deaths

Expecteds from a case mix adjustment model
Rank 3459 dialysis providers using 1998 USRDS data

Large and small providers, treating from 1 to 355 patients per year

So, the expected deaths and standard errors of the estimated SMRs have a very
broad relative range

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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The Ranking Challenge

@ Ranking estimated SMRs is inappropriate, if the SEs vary over providers
o Unfairly penalizes or rewards providers with relatively high variance
@ Hypothesis test based ranking: Hp : SMR,,; = 1
o Unfairly penalizes or rewards providers with relatively low variance
@ Therefore, need to trade-off signal and noise

@ However, even the optimal estimates can perform poorly
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USRDS, SMRs: MLEs and exact Cls (1/40, ordered MLEs)

ﬂ “\

1 e 2 % h#
| e s T T

@ Sampling variability has a wide range over units

@ Difficult to trade-off signal and noise ‘by hand’
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Posterior distribution: original and stretched scale

- =t i
= I L
= =T
= T T T T
o 20 40 &0 20 100 120
Provid dler
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pmle. pPm. SE(p™e) using USRDS dialysis data 23

middle = MLE :: whisker = SE :: bottom = Posterior Mean

T T T T T T
0.0 0.5 1.0 1.5 2.0 25

@ Ranks for p™e are different from those for 5P™

23Lin R, Louis TA, Paddock S, Ridgeway G (2009). Ranking USRDS, provider-specific SMRs from 1998-2001.
Health Services Outcomes & Research Methodology, 9: 22-38. DOI 10.1007 /s10742-008-0040-0.
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Optimal Ranks/Percentiles®*

@ The ranks are,
K

Re(8) = rank(0k) =D lio,>0,}
j=1
P = R/(K+1)

@ The smallest 6 has rank 1 and the largest has rank K
The optimal SEL estimator is,

R(Y) = EgylRu(0)|Y]= Zpr 0 >0, 1Y)
j=1

Optimal integer ranks are, R = rank(R)
Ri(Y) = rank(Ri(Y)); P = Ri/(K +1)

@ Other loss functions, for example P (above v)/(below ) are more relevant in
genomics and other applications wherein the goal is to identify the extremes

24Shen W, Louis TA (1998). Triple-goal estimates in two-stage hierarchical models. J. Royal Statistical
Society, Ser. B, 60: 455-471
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Relations among percentiling methods

1998 USRDS data

Fad 35501

Fad 35301

Percanties by P

08
L
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02
1

00 02 04 06 0B 10

Percenties by MLE
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08
L

06

02
1

[J(
L

T T T T T T
00 02 04 06 08 10
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Performance Comparisons: Gaussian/Gaussian with o2
Lin et al. (2006) Bayesian Analysis

Percentiles computed from
Posterior Posterior
Variation Mean Mean MLE
in 02 || Optimal  log(SMR) SMR SMR
None 516 516 516 516
medium 517 517 534 582
high 522 525 547 644

SEL performance: 10* x E(Pet — ptrue)?
(the no-information value is 833)

Robustness
When K is ‘not small,’ can use a (smooth) non-parametric or semi-parametric
prior

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Robustness:

density

with large K, can us a (smooth) NP Prior

— Smoothed NP - - - - - Parametric

Posteriors for 6, 1998

o
S
— Smoothed NPML
o | |- NGD
- MCMC Posterior
° |
(o)
o
i=}
S -- SR
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Shrinkage can be controversial

Ash et al. (2012), COPSS White Paper
@ For example the SMR for the center with greatest uncertainty is pulled all the
way back to 1.0, ‘hiding’ the poor performance
@ It is especially controversial when sample size might be informative in that low
volume (high variance) units tend to perform relatively poorly (practice makes
perfect) and that shrinkage masks this feature
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Classification (above +)/(below ) loss (Fvi)
Lin et al. (2006) Bayesian Analysis

@ In some contexts interest is in identifying the several highest (top 0.1%) or
lowest true ranks

@ Examples include SNP identification, dialysis center performance, poverty rates
in small areas, ...

@ For 0 < v < 1, minimize a normalized false detection rate (FDR), denoted ‘OC’
pr(P >~ | PR <7,Y)

OC(v |Y) =
1Y) —
@ For optimal estimates, let
m(y) = pr(Pxk > [yK]) (see below for an efficient computation)

Pu(v) = rank{m()}/(K +1)

@ As do the R(Y), the () quantify the strength of the ranking signal
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74(0.8 | Y) versus P,(0.8) for 1998

Pr(p>0.8)

Posterior probability based on full data set
(AR(1) model)

1.0

00 02 04 06 08

0.0 0.2 0.4 0.6 0.8 1.0

P(0.8) for 1998

@ Optimal percentiles and posterior probabilities computed with the single year
model (¢ = 0) and the AR1 model (¢ = 0.90)
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Histogram Estimates®®

The setup:
01,...,0 iid G
Yelbe  ~  fi(y|6k)

1
. Gk(t)e) = < > 1o <t} the EDF of the 0
@ Note the finite population goal

@ The optimal SEL estimate is:

Gk(tlY) = E[Gk(t;0)|Y] = ZP 0 < tY)

@ The optimal discrete SEL estimate is:

A ~ - 2j—1
Gk(t|Y):mass 1/K at U; = G;l ( J2K \Y)

@ An empirical version of Efron’s Oracle, see?®

25Eﬂ'on B (2019). Bayes, Oracle Bayes, and Empirical Bayes (with discussion). Statistical Science,
34: 177-235.

Shen W, Louis TA (1998). Triple-goal estimates in two-stage hierarchical models. J. Royal Statistical
Society, Ser. B, 60: 455-471.
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Associated mean and variance produced by Gk
(and approximately those by Gk)

@ Let, 07" =E(0]Y)
mean = /thK(t Zep’"fef”"
variance = / t2d Gy (t) — (65™)?

DL AN EED M AR

@ The histogram of the Gfm is under-dispersed because it represents the second
term, but not the first term

@ So, use a histogram based on the mass points for EK

@ If the model is correct, G and G are consistent estimates of G with appropriate
location, spread and shape
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Gaussian Simulations: GR = G, Need to get the spread right

ML GR
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Getting the

spread right

Y
e
c=e+f
b
f
mu a theta
Figure 3: A triangle d tration of the value of shrinkag,
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A log-normal prior

Posterior means GR
@ @
3 3
g 3 g 32
3 4
e
&
o o
3 3
o =
3 3
] 2 4 6
CB
@ @
3 3
e = 5§ =
2 o E3 o
2
g i
& & | |
il ~
3 3
a = .III |||
3 3
0 2 4 L3 ] 2 4 6

Figure 6: PM. GR and CB for a log-normal prior
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Gaussian mixtures, prior variance, 72 = 1.25

Columns are modeling priors

GAUSSIAN T(5) DP-1 DP-2 SBR
® o?<<10 JMMM JMMM Jﬂ%m J%m
s 14 2 0 2 4 s 14 2 0 2 4 s -4-2 0 2 4 s -4-2 0 2 4
GAUSSIAN T(5) DP-1 DP-2 SBR
@ s2=10 “n i: | i: : | : M
| [N gJ | [N gJ i g | i g i
S42002 4 S42002 4 S42002 4 S4202 4 S4202 4
GAUSSIAN T(5) DP-1 DP-2 SBR
g J i g J 8 I 8
S 4202 4 S4-202 4 S4-202 4 S4-202 4

DP-1 and DP-2 = Dirichlet process priors; SBR = Smoothing by Roughening
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Math Achievement?’ vy

@ Data are math achievement scores for 7185 students in 160 schools from the
dataset ‘MathAchieve' in the R package nlme

@ Histograms produced by a Bayesian model to produce school-level effects using
a Gaussian model for student scores conditional on the school effect and either a
Gaussian or a Dirichlet Process (DP) prior for the school effects

@ Histograms are for the full sample and the non-minority student sub-sample
@ ‘Direct’ are school-level effects w/o shrinkage (a flat prior on them)
@ 'Bayes Gaussian’ are school-level effects via a Gaussian prior and
‘histogrammed’
@ ‘Bayes/DP’ are school-level effects via a Dirichlet Process prior and
‘histogrammed’

27F‘addock SM, Ridgeway G, Lin R, Louis TA (2006). Flexible Prior Distributions for Triple-Goal Estimates in
Two-Stage Hierarchical Models. Computational Statistics and Data Analysis, 50: 3243-3262
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Histogram estimates for math achievement (FYI)

(a) FULL SAMPLE:
Observed school means:
Math achievement

@ Direct 3
g
B L —
o M M
Vatharement
(b) FULL SAMPLE:
GR estimates using Gaussian
> g
@ Bayes/Gaussian 8
s
g
(©) FULL SAWPLE:
GR estimates using DP
@ Bayes/DP s

Densiy

Densiy

Densiy

020

05 o010

000

015

010

000

015 020

010

(d) NON-MINORITY STUDENT SUBSAMPLE:
Observed school means:
Math achievement

Math achievement

(e) NON-MINORITY STUDENT SUBSAMPLE:
GR estimates using Gaussian

(f) NON-MINORITY STUDENT SUBSAMPLE:
GR estimates using DP
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The triple-goal, GR Estimates®® (v

@ To produce § with a histogram that is a good estimate of the empirical
distribution of the underlying 6-values, use

0 = Ug

N ~ . /2j—1
0 = G:t Y
J K (2K | )

with R the optimal, integer ranks {Ry, Ri(v), ...}

@ The 68" are triple-goal:
@ Ranking them produces optimal ranks
@ Their histogram is optimal
@ SEL for estimating individual 0s is higher than for the posterior means,
but the penalty is small and GR estimates retain much of the Bayes
advantage over MLEs

@ They allow one set of estimates to be released and used for all three goals

@ They support subgroup identification

285hen W, Louis TA (1998). Triple-goal estimates in two-stage hierarchical models. J. Royal Statistical
Society, Ser. B, 60: 455-471
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Bayes & Multiplicity

A basic case, see also (Bayes) FDR, etc.

@ The prior to posterior mapping doesn't ‘know’ about multiple comparisons

@ With additive (1 + 1 = 2), component-specific losses, each comparison is
optimized separately with no accounting for the number of comparisons

@ However, empirical Bayes or Bayes empirical Bayes links the components
because the posterior ‘borrows information”

@ The consequent shrinkage towards the overall mean controls multiplicity

@ The Bayesian structure ‘calms’ the multiplicity

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Shrinkage controls multiplicity: The K-ratio

RE ANOVA
0 01,...,0 iid N(u,72)
o [Yi |0 ind N(b o)

0.2
W (i a-Bvi-ma-8)7)
F = 1/B

o [0 | Y] ~

Compare columns 1 and 2 (can compare all columns):

1 1
ayes fre —1)" 2 Yi—-Y. F—1)" 2
s - () = () )

@ The Z-score is damped by the value of the F-statistic; larger F damps less

@ If Hy: 61 = 02 = ... = 0Ok is true, the overall type | error is controlled because F
will be close to 1.0

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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One-sided, type | error using the posterior distribution
True B=1 (r2=0)

K single K — 1 indep. pr(é =1)
test contrasts x100

10 | 0.00116 0.01038 56.3
20 | 0.00050 0.00943 54.3
30 | 0.00028 0.00796 53.5
50 | 0.00012 0.00562 52.7
100 | 0.00003 0.00267 51.9
500 | 0.00000 0.00009 50.8
1000 | 0.00000 0.00001 50.6
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Comments

@ The magnitude of F continuously adjusts the test statistic

@ For large K, under the global null hypothesis (Hg: 01 = 6> = ... = 0,
equivalently 72 = 0),
pr(F < 0) = 0.5 and so pr(all Z; =0) = 0.5

@ The family-wise rejection rate is much smaller than 0.5, thus controlling the
type | error

@ ‘Scoping’ is important because the type and number of components in the
analysis determines the value of i and B

@ |If collective penalties are needed, use a multiplicity-explicit, non-additive loss
function (e.g., 1 + 1 = 2.5)
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Non-Additive Loss (Fv))

@ Unit penalties for single errors 4+ an extra penalty for making two errors

Parameters: 61,0, € {0,1}
Probabilities: mij = prify =i, 02 = j]

Decisions: ai,az € {0, 1}
Loss(a, 0) : a1(1—601)+ (1 —a1)61

4+ a(1—02)+ (1 — a2)b-
”‘,’(1 — 91)(1 - 92)3132 ‘
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Optimal Decision Rule (v

Decision Rule

A

b

IA

o

:
ANV OIA

ay=0,a=0
ay=0,ap=1

5
5
5 a=1la=0
5

Mg > M1 > ap=1
0, 1F (27T+1 — 1) < YToo
dy =
1, 1F (2my1 —1) > 7moo
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Bayes in the regulatory context
Visit, FDA Impact Story: Using Bayesian Hierarchical Models

@ Frequentist properties can be assessed, but timing is key

@ At the outset of an investigation, if there is little prior information, the
frequentist properties of the full investigation are relevant

@ However, a second, well-controlled study with the (possibly discounted) results
of the first study used as an informative prior that gives relatively high
probability to a non-null region, will produce an inflated type | error

@ If you trust the prior, compute the Type | error, but don't pay much
attention to it

@ Timing of is also important in a frequentist analysis; part-way through a study
the conditional type | error will not be 0.05.
Need a trusted process
@ A trusted and reproducible protocol/process is needed for developing prior
distributions, making decisions, etc.
@ The particulars will differ from the frequentist criteria currently used by the
FDA, but the goals are the same:

o Valid design, conduct and analysis
o A trusted, transparent process for evaluating sponsor-produced designs
and results
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The Bayesian Approach to Design and Analysis

@ Potential benefits are substantial, but effectiveness requires expertise and care

@ It is very effective in generating procedures that can be evaluated for both Bayes
and frequentist properties

@ Analyses are guided by the laws of probability, which is especially valuable when
addressing complex, non-linear models and utilities

@ All (identified) uncertainties are transported to the posterior distribution

@ Induces probabilistic relations amongst data sources, and combining evidence
occupies the middle ground between ‘complete pooling’ and ‘no relation,’
o Bayes & Frequentist

Hoo: Unit-specific values are equal
Hp: The unit-specific values are unrelated

o Uniquely Bayes (the key to combining evidence)

Hp: Unit-specific values come from the same probability distribution;
they are different, but are ‘siblings’
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The Bayesian Approach to Design and Analysis

@ Potential benefits are substantial, but effectiveness requires expertise and care

@ It is very effective in generating procedures that can be evaluated for both Bayes
and frequentist properties

@ Analyses are guided by the laws of probability, which is especially valuable when
addressing complex, non-linear models and utilities

@ All (identified) uncertainties are transported to the posterior distribution
Induces probabilistic relations amongst data sources, and combining evidence
occupies the middle ground between ‘complete pooling’ and ‘no relation,’

o Bayes & Frequentist

Hoo: Unit-specific values are equal
Hp: The unit-specific values are unrelated

o Uniquely Bayes (the key to combining evidence)
Hp: Unit-specific values come from the same probability distribution;
they are different, but are ‘siblings’

o The approach will not rescue poor data or a poor data model
o e.g., a model that fails to address selection effects, confounding, ...
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The Bayesian Approach to Design and Analysis

@ Potential benefits are substantial, but effectiveness requires expertise and care

@ It is very effective in generating procedures that can be evaluated for both Bayes
and frequentist properties

@ Analyses are guided by the laws of probability, which is especially valuable when
addressing complex, non-linear models and utilities

@ All (identified) uncertainties are transported to the posterior distribution

@ Induces probabilistic relations amongst data sources, and combining evidence
occupies the middle ground between ‘complete pooling’ and ‘no relation,’
o Bayes & Frequentist

Hoo: Unit-specific values are equal
Hp: The unit-specific values are unrelated

o Uniquely Bayes (the key to combining evidence)
Hp: Unit-specific values come from the same probability distribution;
they are different, but are ‘siblings’
@ Warning: The approach will not rescue poor data or a poor data model
o e.g., a model that fails to address selection effects, confounding, ...

@ Closing mantra: There are no free lunches in statistics, but there are a large
number of reduced-price meals, many based on Bayesian recipes
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Bayes and Subgroups??-39:3!

@ The SOLVD studies of left ventricular dysfunction examined the impact of the
drug Enalapril in a group of patients with congestive heart failure and low
ejection fraction

@ In total, 2569 patients were enrolled in the treatment trial with 1285 patients
being assigned to the treatment arm and 1284 patients being assigned to the
placebo arm

@ At the scheduled end of the study, 510 patients had died in the placebo group
while 452 had died in the Enalapril group

@ We created 12 subgroups
{gender x (age < 65 vs > 65) x (ejfr 6-22, 23-29, 30-35)}

29Henderscvn NC, Louis TA, Wang C, Varadhan R (2016). Bayesian Analysis of Heterogeneous Treatment
Effects for Patient-Centered Outcomes Research. Health Services and Outcomes Research Methodology, 16:
213-233. doi.10.1007/s10742-016-0159-3.

3OWang C, Louis TA, Henderson N, Weiss CO, Varadhan R (2018). BEANZ: An R Package for Bayesian
Analysis of Heterogeneous Treatment Effect with a Graphical User Interface. Journal of Statistical Software, 85:
doi: 10.18637/jss.v085.i07.

31BEANZ at: https://www.research-it.onc.jhmi.edu/dbb/custom/A6/ and at http://cran.r-project.org.
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Basic subgroup results for the log(hazard ratio)
@ Substantial shrinkage for the basic model with the SD for the between-subgroup
RE, w ~ Half-N(100)

@ Little ‘enthusiasm’ for subgroup effects

Sbgrp
EjecFrac. Age Gender Size

high >65  Male 216

® Fully Stratified
* Basic

medium >65  Male 211
low >65  Mae 217
high <65  Male 39
medium <65  Male 459
low <65  Male 563
high >65 Female 80
medium  >65  Female 62
low >65 Female 54
high <65 Female 107
medium <65 Female 92

low <65 Female 108

i..\mt.il
|

125 -1 075 05 025 0 025 05 075 1

treatment effect

Black: Frequentist estimates and Cls
Red: Standard Bayes estimates and credible intervals

Solid vertical: Overall treatment effect
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Sensitivity analysis wrt the between-subgroup SD (w)

@ b|Z| ~ Half-N(b?)

Sbgrp
Ejec.Frac. Age Gender Size L - Hal-N(01)
high >65  Male 216 —_— b — o-Hai-N(1)
|~ o-HaiN(i00)
medium  >65  Male 211 —_— —— o~ Jefireys
1
low >65  Male 217 = '
high <65  Male 300 0
medium <65 Mae 450 ==
low <65  Male 563 —_— ]
]

high 65 Female 80 $
medium  >65 Female 62 —
low >65 Female 54 & ——u]

high <65 Female 107 —_—t
medium <65 Female 92 ;‘
low <65 Female 108 % !
T T \ t T T
o7 -0 025 0 025 0s

treatment effect

Fig. 3 Basic shrinkage model—sensitivity to choice of prior. SOLVD data. ]’mlenor ‘means and associated
credible intervals for the following choices of the prior for @: @~ Half —Normal(0.1),
© ~Half — Nommal(1), &~ Half —Normal(100), and e~ Jeffreys. The npprox\male Jeffreys prior for
? employed here is p(?) x @2 for & >0.005 and p(w?) = 200 otherwise
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Stratified, basic Bayes, extended Dixon-Simon®?

Sbgrp
Ejec.Frac. Age Gender Size
high  >65 Male 216

® Fully Stratified
* Basic Shrinkage
¢ Ext Dixon-Simon

medium  >65 Male 211
low >85 Male 217

high <65  Male 309
medium <85 Male 459
low <85 Male 563

high >65 Female 80
medium  >65 Female 62
low >65 Female 54

high <65 Female 107
medium <65 Female 92

low <65 Female 108

425 41 075 05 02 0 025 05 0B 1

treatment effect

Fig. 4 Extended Dixon-Simon model. SOLVD data. Posterior means and credible intervals for each of the
12 subgroups defined by the variables: gender, age, and baseline cjection fraction. Point estimates and
uncertainty intervals from the basic shrinkage model and from the fully stratified frequentist analysis are
also shown

2Jones, H, Ohlssen, D, Neuenschwander, B, Racine, A, Branson, M (2011). Bayesian models for subgroup

analysis in clinical trials. Clinical Trials, 8: 129-143.
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Cluster Randomized Trials

@ Develop an informative prior distribution for the between-cluster variance using
studies thought to have a similar variance component, and us it

Design: to find the required number of clusters for a stand-alone analysis
Analysis: to conduct a Bayesian analysis for the between cluster variance for a study
with a small number of clusters that can’t/shouldn’t stand alone
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Design and Analysis for Cluster Randomized Studies

Setting

Compare two weight loss interventions
Randomize clinics in pairs, one to A and one to B
Compute clinic-pair-specific comparisons combine over pairs

How to design and how to analyze, especially with a
small number of clinics?

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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The equal sample size, unpaired case

@ There are K clusters
@ Within-cluster sample sizes are ny = n
@ Vj,y = V(treatment comparison), when assuming independence

@ Adjust this by the between-clinic variance component, equivalently by p, the
Intra-class Correlation Coefficient (1CC):

Vie = Vipg X[14 p(n—1)] = Vipg X [design effect]
72
p = 7 (the 1CC)
72 = the between-clinic variance
o = single-observation variance
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Design

and Analysis Considerations

In the paired-clinic case, to compute V.. = V/(treatment comparison), need to
account for the following variances:

Individual measurement (o)

o The trial will provide sufficient information
Between-clusters: within (72) and between (72) cluster pairs with
(=73 +73)

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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The need for an informative prior

@ With a small number of clusters, the trial will provide little information on 72
and even less information on v = 72/(72 + 72)

@ Without informative priors, an ‘honest’ computation of posterior uncertainty
(one that integrates over uncertainty in 72 and ) will be so large as to make
results essentially useless

@ Therefore, either don't do the study or use informative priors to bring in outside
information

@ Fortunately, other weight loss studies provide credible and informative prior

information on 72, but not so for o7

o For v, we need to rely primarily on expert opinion and sensitivity analysis
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A Bayesian Model

@ Use an informative, data-based prior for 72 and a small-mean, small-variance
prior for
2~ 1G = Tgo with 7'925 =2x 7'520
&M ~ Beta(e,M)
E(v) = &V()=el-¢/M
@ Take the 'best estimates’ of (62, p) from other cluster-randomized studies of
weight change and obtain o2 ~ (0.34)2, likely 5: (0.006, 0.010, 0.050)

@ = 10* x 72 = (7.0,11.7,60.8), 73 = 11.7 x 10~*,7& = 23.4 x 10—*

@ Use € = 0.10 and a relatively large M = 15

o The 90t percentile is approximately 0.20
o Conservative in that there is little gain from pairing
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Measurement Uncertainty & Full Probability Modeling

Trend Tests that Accommodate Genotyping Errors®

@ A standard GWAS evaluates SNP-specific association with a phenotype (disease
status), for example by ranking SNP-specific Z-scores

@ However, due to technical and biological factors, genotype ‘calls” (AA, AB, BB)
can be uncertain

@ These errors can produce invalid or inefficient inferences

@ Most calling algorithms produce a ‘best’ call along with a call-specific
uncertainty measure

@ Many recommend not using the call if uncertainty is too large

33Louis TA, Carvalho BS, Fallin MD, Irizarry RA, Li Q, Ruczinski | (2011). Association Tests that
Accommodate Genotyping Errors. pp. 393—-420 in, Bayesian Statistics 9. (JM Bernardo, MJ Bayarri, JO Berger,
AP Dawid, D Heckerman, AFM Smith, M West, Eds.), Oxford University Press, Oxford UK.
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Sense/Antisense Information

SNP 11905 SNP 18233 SNP 8548 SNP 7

@ Genotype calls ranging from 'difficult’ to ‘easy’

@ Most SNPs are ‘easy’ (like #7), some are uncertain, some are essentially
hopeless

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER
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Quantify and Retain Genotype Uncertainty

@ A test statistic should take genotype uncertainty into account via a vector of
genotype posterior probabilities
o Deterministic calls have a 1 in a single position
@ Efficiency is measured by the correlation between the true genotype and
genotype probabilities
HapMap Gold Standard

@ Compute correlations between the gold standard and standard ‘best’ calls,
probability vector calls and ‘best’ as the mode of the probability vector

@ Posterior probabilities from Carvalho et al. (2009)3*

34Carvalho B, Louis TA, Irizarry RA (2009). Quantifying Uncertainty in Genotype Calls. Bioinformatics, 26:
242-249.
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Correlation(Bayes, Gold)/Correlation(Standard, Gold)

Lesson: Build an uncertainty model and use Bayesian processing
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correlation(Genotype, CRLMM) / correlation(Genotype, BRLMM)
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Correlation(Bayes, Gold)/Correlation(ModalBayes, Gold)

Lesson: Percolate uncertainty all the way through

100 — [truncated ]

60 —
40

20

o u_n_n_umﬂ{ mﬂmwﬂmmmmnm looo ctdfha @ o  aa
T T T T T

r T T

log(Ratio) ~ —0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06
Ratio 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06

correlation(Genotype, CRLMM) / correlation(Genotype, CRLMM][called])
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