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Brief Bio

PhD Columbia, Mathematical Statistics, 1972

Then, Postdoc@Imperial, BU Math Dept., Harvard Biostatistics
U of Minn. Biostatistics (Head), RAND/DC, JHU, JHU/Census
JHU, JHU/FDA (Emeritus, but not retired) Whew!

IBS president, editor of JASA/ACS and Biometrics

Considerable involvement in clinical trials

Lots of Bayes involvement, both methods development and applications

◦ Carlin & Louis (2009). Bayesian Methods for Data Analysis, 3rd ed.
Chapman & Hall/CRC Press

Visit my vita for full information
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Outline of a, somewhat grand, tour

• Examples of when to bother with Bayes
• Methods
• Applications
◦ Clinical
◦ Epi
◦ Policy

• Summary

I’ll present a subset of the following slides
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Preamble

Check out these references1,2,3

Efron (1986)4 is a must-read. Quoting Efron, then Dennis Lindley;

Efron: ’A prime requirement for any statistical theory intended for
scientific use is that it reassures oneself and others that the data have
been interpreted fairly.”
Lindley: “The objective element is the data: interpretation of the data is
subjective, . . . .”

Two more quotes,

◦ Herman Rubin (1970): “A good Bayesian does better than a
non-Bayesian, but a bad Bayesian gets clobbered.”5

◦ Tom Louis (2019): ‘Pure’ Bayes pairs nicely with Port, but when you
leave port for the high seas of applications, some degree of impurity is
usually necessary. Bayesians who engage in important studies use the
paradigm as the aid to navigation, not as a straightjacket. The goal is to
do a good job, and one can’t be (too) doctrinaire.

1
Carlin BP, Louis TA (2009). Bayesian Methods for Data Analysis, 3rd ed. Chapman & Hall/CRC.

2
Gelman, et al. (2013). Bayesian Data Analysis, 3rd ed. Chapman & Hall/CRC.

3
O’Hagan A (2019). Expert Knowledge Elicitation: Subjective but Scientific. The American Statistician,

doi.org/10.1080/00031305.2018.1518265.
4

Efron B (1986). Why isn’t everyone a Bayesian? (with discussion) The American Statistician, 40: 1–11.
5

Reported by IJ Good.
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Confidence interval for a binomial probability

Confidence intervals produced by the Bayesian formalism can have excellent
frequentist performance, indeed as good or better than a ‘frequentist’ approach

Here’s the frequentist model,
Parameter: p = probability of an event

Data model: Y ∼ binomial(n, p)

Estimate: p̂freq = Y
n
, (the MLE, the direct estimate)

Add the Bayesian structure,
Prior: p is generated by a Beta(a, b) distribution with mean

µ = a/(a + b), and ‘effective sample size:’ M = a + b

Posterior: Beta(a + Y, b + n - Y) with mean a weighted average of
µ and p̂freq , thereby shrinking the latter towards the former

p̂Bayes = (1− Dn)µ+ Dnp̂
freq

With weight on p̂freq ,
Dn =

n

M + n
,

which increases towards 1.0 as n increases

Stabilize by shrinkage, but as n gets large, increase the weight on p̂freq
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Beta Distributions and producing a CI
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Producing a CI

Either cut off 2.5% tails on each side or find the highest posterior density
(HPD) interval, produced by drawing a horizontal line on the posterior density
so that the resultant interval has the desired probability (e.g., 0.95)

HPD automatically deals with shape; the R function binom.bayes and others do
the computations
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Frequentist Coverage: Nominal level is 95%
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a = b = 0.5 and a = b = 1.0 work well;
for n = 5, a = b = 3 performs poorly near 0 and 1

It’s worth discussing whether all CIs for the binomial distribution be

Bayes-generated with either a = b = 0.5 or a = b = 1.0

◦ Unless there is credible evidence for using an informative prior
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CI after observing 0 events in n trials6,7
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n lower upper
10 0 2.38/n
20 0 2.66/n
50 0 2.85/n

100 0 2.92/n
200 0 2.96/n

1000 0 2.99/n

Using the black curve, a horizontal line produces 0 as the left-hand limit

binom.bayes(0,n, conf.level=.95, prior.shape1=1, prior.shape2=1)

◦ A frequentist CI for 0 events is similar, but 1 of n, etc. is challenging

When n ≥ 100 the 95% CI with a = b = 1 is very close to [0, 3/n)

The ‘3’ is a threshold for the number of successes in a study replication that
would seem unusual after having observed 0 successes in the initial study

The sample size to ensure 95% power at p∗ to reject H0 : p = 0 is n = 3/p∗

◦ To detect p∗ = 10−5 (occupational risk) requires n = 300,000

6
Louis TA (1981). Confidence intervals for a binomial parameter after observing no successes. The American Statistician, 35: 154.

7
Manu P, Louis TA, Lane TJ, Gottlieb L, Engel P, Rippey RM (1988). Unfavuorable outcomes of drug therapy: Subjective

probability versus confidence intervals. J. Clin. Pharm. and Therapeutics, 13: 213–217.
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Historical Controls

Data from the current experiment:

C E Total
Tumor 0 3 3

No Tumor 50 47 97
50 50 100

Fisher’s exact one-sided P = 0.121

But, pathologists get excited:

◦ “The 3 tumors are Biologically Significant”

Statisticians protest:

◦ “But, they aren’t Statistically Significant”
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Include Historical Data

Possibly, the pathologist has historical information for the same species/strain,
same Lab, recent time period with 0 tumors in 450 control rodents

S/he has the following table in mind:

Pooled Analysis
C E Total

Tumor 0 3 3
No Tumor 500 47 547

500 50 550

Fisher’s exact one-sided P
.

= .0075

Convergence between biological and statistical significance

Important: Complete pooling gives too much credit to history, and the Bayesian
formalism should be used to structure partial pooling
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Bringing in history
Before seeing the current data, identify relevant experiments

Use the Bayesian formalism

◦ Control rates (θk ) are drawn from a Beta(µ,M)

E(θ) = µ

V (θ) =
µ(1− µ)

M + 1

◦ Use all the data to estimate (µ,M)→ (µ̂, M̂)
(or to produce their joint posterior distribution)

◦ Use Beta(µ̂, M̂), better still mix over the full posterior

Female, Fisher F344 Male Rats, 70 historical experiments8

Tumor N M̂ µ̂ M̂
N

Lung 1805 513 .022 28.4%
Stromal Polyp 1725 16 .147 0.9%

Adaptive down-weighting of history

Judgment is required as to what historical data are sufficiently relevant

8
Tarone RE (1982). The use of historical control information in testing for a trend in proportions. Biometrics

38: 215–220.
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 To find a method for: 
 “… the probability that an 
event has to happen, in 
given circumstances…” 

 Bayes Rule: 
Pr(θ|Y) ∝ Pr(Y|θ) Pr(θ) 

 © http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Bayes.html  

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER 12



Bayes’s grave
Non-conformist section of Bunhill Fields, London
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Bayesian Analysis

1. Design a study & collect data

2. Specify a statistical model

The ‘data model’ (the likelihood)
A prior distribution and possibly a hyper-prior
Bayesians need to make these explicit

3. Use Bayes’ theorem to produce the Posterior Distribution

4. Do something with it, possibly structured by a loss function

◦ (. . .)2: Posterior Mean
◦ | . . . |: Posterior median
◦ 0/1 + c × volume: Tolerance Interval (CI)
◦ 0/1: Hypothesis Test/Model Choice

Steps 1 & 2 depend on scientific/policy knowledge and goals

Steps 3 & 4 are governed by the rules of probability

Step 3 doesn’t depend on what you are going to do in Step 4

Evidence, then decisions
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Bayes Infographic (FYI)

(‘paras’ are parameters)

The go-forward model:

Prior Distribution =⇒ paras =⇒ Observed Data

G =⇒ paras ∼ G =⇒ Y ∼ F (y | paras)

Fundamental Bayesian computation: Condition on the observed data and
update the probability distribution for the paras

The go-back model:

Observed Data =⇒ Posterior: paras | Data =⇒ Inferences

Y =⇒ paras ∼ G(· | Y ) =⇒ Inferences, e.g., E(paras | Y )

With f and g density or mass functions, it is always the case that;

(Posterior Odds) = (Prior Odds)× (Likelihood Ratio)

g(paras | Y )

g(paras∗ | Y )
=

g(paras)

g(paras∗)
×

f (Y | paras)

f (Y | paras∗)
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Bother with Bayes when you want (FYI)

Excellent Bayesian performance

Excellent Frequentist performance

◦ Use priors and loss functions as tuning parameters

To strike an effective Variance/Bias trade-off

To propagate full uncertainty

To design, conduct and analyze complex studies

To address non-standard goals such as ranking

Sometimes it isn’t worth the bother

Sometimes you are (almost) forced into it

◦ To incorporate prior information (duh)
◦ To formally combine evidence
◦ To analyzing complex systems & address complex goals
◦ To develop spatial and network models
◦ To deal with a small number of clusters
◦ To accommodate complex measurement error
◦ To handle complex . . . . . .
◦ To avoid Rod Little’s ‘inferential schizophrenia’ in design-based analyses9

9
Little RJ (2012). Calibrated Bayes: an alternative inferential paradigm for official statistics (with discussion).

Journal of Official Statistics, 28: 309-372 .
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Design

Everyone is a Bayesian in the design phase

All evaluations are ‘preposterior,’ integrating over both the data (a frequentist
act) and the parameters (a Bayesian act)

A frequentist designs to control frequentist risk over a range of parameter values

A Bayesian designs to control preposterior (Bayes) risk

Bayesian design is effective for both Bayesian and frequentist goals and analyses
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Bayesian Design to Control Frequentist CI Length

Variance of a single observation: σ2

L is the desired maximal total length (distance from the low endpoint to the
high endpoint) of the CI

For two-sided coverage probability (1− α):

n(σ, L, α) = 4Z2
1−α/2

(σ
L

)2
If we don’t know σ2, then CI length is, itself, a random variable and uncertainty
related to it must be accommodated

To find a suitable sample size, we can,

◦ do a series of ‘what ifs’ or a ‘worst case’
◦ put a distribution on σ2 (ideally developed from other, similar studies)

and use it to incorporate uncertainty in its value
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Frequentist CI Length: The Bayesian approach

Background data or prior elicitation provide a prior distribution (G) for σ2

Using G , select the sample size (n) to satisfy either,

EG (CI length|n) ≤ L

Or, more relevant for a single study,

prG (CI length > L|n) ≤ γ

Similarly, for testing find n so that,

prG (Power < 0.80|n) ≤ γ
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CI Length: sample size factor for a prior coefficient of
variation (η) relative to knowing σ2 (η = 0)
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The basic Gaussian/Gaussian model

Prior: θ ∼ G = N(µ, τ 2)
Sampling distn.: [Y | θ] ∼ f = N(θ, σ2)

Marginal distn.: fG = N(µ, σ2 + τ 2) Overdispersion

For known (µ, τ2, σ2), the posterior is also Gaussian:

E(θ|Y ) = Bµ+ (1− B)Y = µ+ (1− B)(Y − µ)

V (θ|Y ) = (1− B)σ2 = Bτ2

B =
σ2

σ2 + τ2

Shrinkage & variance reduction

Larger σ2 produces greater shrinkage
Larger τ2 produces less shrinkage

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER 21



Nchelenge Zambia Malaria Prevalence: Independent RE model with covariates

Residuals shrink towards 0
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Basic Estimates & Confidence intervals
You might not need to bother

Estimate a population mean based on an iid sample

µ̂ = X̄n

CI: X̄n ± Z σ̂/
√
n

Yes, it’s Bayes with a flat prior, but so what?

A frequentist can use a BCa CI to (almost) avoid parametric assumptions

So, why bother with Bayes?
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Not so basic: what if we know µ ≥ 0

The maximum likelihood estimate is µ̂mle = max(X̄n, 0), but there are
likelihood-based including Bayesian alternatives that can perform better

So, consider a Bayesian CI with either a flat (likelihood) or an informative prior
on [0,∞)

The posterior mean (µ̂pm) is a worthy competitor to the MLE,

µpm = E(µ | data) =

∫ ∞
0

u · g(u | data)du

Good estimates strike an effective variance/bias trade-off and so have small
mean squared error (MSE)

MSE = E(µ̂− µ)2 = V(µ̂) + (BIAS)2
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Unrestricted and Restricted Posterior Distributions

Unrestricted Restricted
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MSE for µ̂mle and µ̂pm when the parameter is ≥ 0
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If you want to improve MSE for the Bayes estimate near 0, use a prior that gives
more weight near 0

No Free Lunch: You pay for this with degraded performance for large µ
◦ If the prior is HN(0, τ2), MSE will increase quadratically
◦ For a fix, use something like that in10

10
Eberly L, Louis TA (2004). Bayes/frequentist compromise decision rules for Gaussian Sampling. J. Statistical

Planning & Inference, 121: 191-207.
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Multiple draws, compound sampling
Empirical Bayes (EB) and Bayes empirical Bayes (BEB)11

θ1, . . . , θK iid N(µ, τ2)

[Yk | θk ] ind N(θk , σ
2
k )

[θk | Yk ] ∼ N
(
µ+ (1− Bk )(Yk − µ), (1− Bk )σ2

k

)
Bk =

σ2
k

σ2
k + τ2

‘Shrinkage’ and Variance Reduction

◦ For unequal σ2
k , posterior variance flattening

Generalizes to complicated models: regression structure in the prior, spatial or

network models, non-conjugate priors

◦ Need to use MCMC to do the computations

Generalizes H0 : θ1 = . . . = θK , by posing that the θk come from the same

distribution rather than all being equal

◦ τ2 = 0 produces the usual H0

11
Efron B (2019). Bayes, Oracle Bayes, and Empirical Bayes (with discussion). Statistical Science,
34: 177–235.
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Objectivity conferred by compound sampling

Multiple draws from the prior provide information on it
=⇒ Empirical Bayes or Bayes empirical Bayes (BEB)

When σ2
k ≡ σ

2

µ̂ = Ȳ

S2 =
1

K − 1

∑
k

(Yk − Ȳ )2

τ̂2 = (S2 − σ̂2)+

τ̂2 measures ‘unexplained variation’ not necessarily ‘inexplicable variation’

◦ A more general Xkβ mean model can reduce τ̂2 and move direct
estimates closer to the unit-specific prior mean

◦ However, saturating the mean model gets back to the direct estimates
and a ‘sweet spot model’ is most effective

Unequal σ2
k requires recursion to produce the marginal MLE

BEB (hyper-prior Bayes) brings in the uncertainty in the prior parameters by
integrating over the posterior hyper-prior, generally, requiring MCMC or other
computer-intensive approaches

Subjectivity/Judgment required in choice of the data model, form of the prior,
relevant data, . . .
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Age-specific rate of bone loss12

Woman/age–specific, slope estimates

Positive values are ‘loss’ and a positive trend
indicates a loss rate that increases with age

Short follow-up, so estimated slope and residual variance are imprecise

Empirical Bayes (EB) calms variation and improves woman-specific predictions

Woman/age-specific estimated slopes
Individual estimates EB estimates

12
Hui, Berger (1983). Empirical Bayes estimation of rates in longitudinal studies. JASA, 78: 753–759.
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Stabilizing woman-specific, estimated residual variance

Directly estimated residual variance estimates are shrunken towards a common

value; the degree of shrinkage depends on the precision of the direct estimate

◦ Lower precision produces greater shrinkage

The distribution of the shrunken estimates isn’t chi-square, but a fully Bayesian
analysis uses the joint posterior distribution of all parameters to produce
woman-specific future predictions, prediction intervals, and other inferences that
are more precise than using only each woman’s data

This full probability processing is an advantage of the Bayesian approach

General Point: In this and other contexts, there are three analytic strategies;

Lump: They are all women, so combine the data and use the population-level slopes
and residual variances for each woman

Split: Each woman is absolutely unique, so infer/predict for each woman using only
her data

Compromise: Each woman is unique, but they are all women, so compromise between ‘Lump’
and ‘Split’ with the amount of shrinkage towards population values depending
on precision of the woman-specific estimates
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The general hierarchical model

θ = A vector of parameters

[θ | η] ∼ g(θ|η) [Prior|η], e.g., iid θk

[Y|θ] ∼ f (y|θ) Likelihood

fG (y|η) =

∫
f (y|θ)g(θ|η)dθ [Marginal|η]

g(θ|y, η) =
f (y|θ)g(θ|η)

fG (y|η)
[Posterior|y,η]

[η | h] ∼ h(η) Hyper-prior

g(θ | h) =

∫
g(θ|η)h(η)dη [Prior|h], e.g., exchangeable θk

g(θ|y) =

∫
g(θ|y,η)h(η|y)dη Full Posterior

Bayes empirical Bayes (BEB) combines evidence by integrating wrt h(η|y),
importing uncertainty in η

Hyper-prior Bayes is just ‘Bayes’ with a different prior

The model can be enhanced via covariates in the prior

Can add a hyper-hyper-prior, . . . , but I leave that to epistemology
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Addressing non-standard and otherwise challenging goals

Bayesians have a corner on the market,
at least wrt to procedure-generation

Regions for parameters

◦ Bio-equivalence & non-Inferiority
◦ Inherently bivariate treatment comparisons
◦ Alternative language ballots

Ranks and Histograms

Non-linear models

Adaptive design

Threshold utilities, for example in allocating federal funds
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Being in a complex region (R)
Section 203 of the U. S. voting rights act mandates that a state or political

subdivision must provide language assistance to voters,

◦ if more than 5% of voting age citizens are members of a single language
minority group

◦ and do not ‘speak or understand English adequately enough to participate
in the electoral process”

◦ and if the rate of those citizens who have not completed the fifth grade is
higher than the national rate of voting age citizens who have not
completed the fifth grade

A political subdivision is also covered,

◦ if more than 10,000 of the voting age citizens are members of a single
language minority group, do not ‘speak or understand English adequately
enough to participate in the electoral process,”

◦ and the rate of those citizens who have not completed the fifth grade is
higher than the national rate of voting age citizens who have not
completed the fifth grade.

Every 5 years the Census Bureau must transmit determinations to the
Department of Justice

Bayesian structuring is essential for combining evidence, stabilizing estimates
and computing summaries such as,

pr(θ ∈ R | data)

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER 33



Comparing two treatments: New (N) vs Current Standard (S)

Frequentist

Do a hypothesis test or CI and make a decision

Bayes

Regions for the latent truth: N better than or equal to S; N worse than S

◦ Can also include an indifference region

Find the posterior probability of regions and make decisions

Using 0 as the threshold, decide in favor of N, if pr(N − S > 0 | data) > 0.98

Can find a sample size that controls the probability of mis-classification

Can adjust the prior distribution to satisfy a frequentist criterion such as, for a
specific (N − S) ≤ d < 0,

pr(decide in favor of N | d) ≤ 0.05

However, if you trust the original prior, use it!

◦ Compute frequentist properties, but don’t rigidly adhere to them
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Non-inferiority assessment

(Inferior, nonInferior, Superior ) regions for (N − S) based on the true,

underlying treatment relations

◦ For a cure rate, ‘Superior’ will be positive values
◦ For a death rate, ‘Superior’ will be negative values

Use the posterior distribution to compute the probability of each region and use
these to inform decisions

Conduct sensitivity analyses by varying the,

◦ nonInf threshold
◦ prior distribution, e.g., (pessimistic, equipoise, optimistic)
◦ data model
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Framework for three treatment, non-inferiority assessment

Decision Regions

R1: Current better than Control, New worse than Control
R2: Current better than Control, New better than Control, but ‘inferior’
R3: Current better than Control, New better than Control and ‘non-inferior’
R4: Current better than Control, New better than Current
R5: Current worse than Control, New better than Current and better than Control
R6: Current worse than Control, New better than Current but worst than Control
R7: All bets are off: Current worse than Control, New worse than Control

Boundaries are defined by the true, underlying attributes
(treatment effects, side effects) with no account for statistical uncertainty

The Bayesian posterior distribution provides a window to this latent world

◦ R2 accommodates differential side-effects,
◦ If the new and current have similar side-effects, R2 can be empty

Regions are best determined via a utility function
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The seven regions (R1–R7)
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pr(Region | data) can be obtained no matter how complicated the region, either
by computation or simulation {e.g., Markov Chain Monte Carlo (MCMC)}
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From xkcd
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Formal approach to region occupancy

Inferring into which of several, possibly multivariate, regions true, underlying
treatment effects fall is a fundamental goal

Ingredients include formulating the decision problem, optimizing the decision,
evaluating properties, and determining a sample size that achieves desired
Bayesian (or frequentist) goals

Here is a Bayesian approach, focusing on a scalar parameter (e.g, the difference

in treatment effects) and two regions

◦ A more comprehensive modeling entails a joint prior distribution for all
parameters, producing a joint posterior distribution for them, then
extracting the posterior for the treatment effect or effects

We introduce notation for a three region categorization; with D a generic region,

(D0,D1,D2) = (‘Inferior’, ‘nonInferior’, ‘Superior’).

And, produce two regions by combining D1 and D2,

(D0,D1:2) = (‘Inferior’, ‘Superior or nonInferior’)

D1:2 = D1 ∪ D2.
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Notation for the two region case

θ = Parameter of interest (e.g., treatment effect)

G = Prior distribution for θ

D = Regions defined by values of θ

Xn = Data as a r.v., xn observed value

f (xn | θ) = The data likelihood.

δ(xn) = 0 or 1 according as the decision is that θ ∈ D0, or θ ∈ D1:2

L(δ, θ, c) = Loss function, c ≥ 0

π(xn) = the posterior distribution of region membership,

π(xn) = pr(θ ∈ D1:2 | xn) =

∫
D1:2

g(θ | xn)dθ =

∫
D1:2

f (xn | θ)g(θ)dθ∫
Θ f (xn | u)g(u)du

=

∫∞
d f (xn | θ)g(θ)dθ∫∞
−∞ f (xn | u)g(u)du

, when D1:2 = [d,∞).
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Decision Structure

Decisions (inferences) are structured by a loss and resulting risk function

If the goal is to minimize the probability of incorrect decision, then the obvious
(and correct) decision rule is to decide θ ∈ D1:2, if π(xn) ≥ 0.5

However, the consequences of declaring that θ ∈ D1:2 when in fact θ ∈ D0 can
be different from those for declaring that θ ∈ D0 when in fact θ ∈ D1:2, and the
following loss function addresses this more general case

With δ = 0 or 1 according as the decision is θ ∈ D0 or θ ∈ D1:2,

Loss = 0, when θ is correctly classified
Loss = 1, when δ = 0 is an incorrect classification
Loss = c ≥ 0, when δ = 1 is an incorrect classification.

Specifically,

L(δ, θ, c) = c · δI{θ∈D0} + {1− δ}I{θ∈D1:2}

The decision depends on data, producing,

L(δ(xn), θ, c) = c · δ(xn)I{θ∈D0} + {1− δ(xn)}I{θ∈D1:2}
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Posterior Bayes Risk (conditional expected loss)

RG (xn, δ(xn), c) = EG{L(δ(xn), θ, c) | xn}
= c · δ(xn) {1− π(xn)} + {1− δ(xn)}π(xn).

The minimizing δ(xn) is,

δ̈(xn) = 1, ⇐⇒ π(xn) ≥
c

1 + c
= π
∗(c)

(
c =

π∗

1− π∗

)
.

So, decide,

◦ θ ∈ D1:2, if π(xn) ≥ π∗ = c/(1 + c)
◦ θ ∈ D0 otherwise

This formulation can justify a π∗ value, where c is the relative cost of
mistakenly declaring θ ∈ D1:2 versus mistakenly declaring θ ∈ D0

For example, justifying π∗ = 0.98 requires c = 49, a very (very) large relative

cost of a Type I versus Type II error

◦ c = 49 would be an extreme relative cost in many contexts
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Optimal posterior and pre-posterior risk (FYI)

Using δ̈(xn), the optimal posterior risk is,

RG (xn, δ̈(xn), c) = min[π(xn), c · {1− π(xn)}]

=

{
π(x), π(xn) < π∗ = c

1+c
c · {1− π(xn)}, π(xn) ≥ π∗ = c

1+c

The risk with no information (no data, only the prior) is,

R
(0)
G

(c) = min(π, , c · {1− π})

The pre-posterior, optimal risk (Bayes Risk) is the expectation using the
marginal distribution of Xn.

RG (c) = EG {min[π(Xn), c · {1− π(Xn)}]} (1)
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Finding the required sample size (FYI)

Pre-posterior risk (equation 1) structures finding a sample size that produces
acceptable performance

Evaluation can be by computation or simulation, using the marginal distribution
of Xn (the distribution produced by integrating over the prior distribution)

For the Gaussian model with known variance, x̄n is sufficient, and with
θ ∼ N(µ, τ2), [x̄n | θ] ∼ N(θ, σ2/n), the posterior distribution of θ is,

g(θ | x̄n) = N

{
µ + (1− Bn)(x̄n − µ), (1− Bn)

σ2

n

}

Bn =
σ2

σ2 + nτ2

For D1:2 = [d ,∞) and Φ(·) the normal cdf,

π(x̄n) = 1− Φ

 d − µ− (1− Bn)(x̄n − µ)

σ√
n

(1− Bn).5

 = Φ

µ + (1− Bn)(x̄n − µ)− d

σ√
n

(1− Bn).5


µ = 0 is ‘equipoise’ producing a priori a 50/50 chance of being in D0 or D1:2.

µ = 0.675 is ‘optimistic’ producing a priori pr(D1:2) ≈ 0.63.

µ = −0.675 is ‘pessimistic’ producing a priori pr(D1:2) ≈ 0.37.
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Results (via computation, not simulation)
Sample Size (n)

Scenario 10 20 50 100 300
µ = 0 (equipoise)
c = 1, π∗ = 0.50 18 13 9 6 4

c = 3, π∗ = 0.75 29 22 14 10 6
classification error 26 19 12 9 5

c = 49, π∗ = 0.98 48 43 34 24 15
classification error 48 43 32 24 15

µ = 0.675 (optimism)
c = 1, π∗ = 0.50 11 8 5 4 2

c = 3, π∗ = 0.75 22 16 10
classification error 17 13 8

µ = −.675 (pessimism)
c = 1, π∗ = 0.5 10 5

c = 3, π∗ = 0.75 14 8
classification error 13 7

100×pre-posterior risk: Rows led by values of c and π∗ report risk computed
with the c−value used to produce the optimal rule; rows led by ‘classification
error’ report performance of the same rule, but evaluated with the (1, 1) loss
function. All entries are for d = 0, σ2 = 4, τ2 = 1.
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Comments (FYI)

µ = 0 is ‘equipoise’ producing a priori a 50/50 chance of being in D0 or D1:2.

µ = 0.675 is ‘optimistic’ producing a priori pr(D1:2) ≈ 0.63.

µ = −0.675 is ‘pessimistic’ producing a priori pr(D1:2) ≈ 0.37.

The classification rule based on c = 1, minimizes classification error and has risk
smaller than the classification error associated with a rule generated with a
different c−value, for example, 25.7 > 17.9; 32.4 > 8.8.

Not surprisingly, classification error increases with c because the optimal rule
gives increasingly discrepant costs to the two types of error.

For a given scenario, the optimal risk for the risk function used to compute the
rule and the classification error are quite close, with the discrepancy decreasing
as c increases.

The method can be used to find the necessary sample size, either by computing
for a fine grain of n−values, and identifying the sample size that works, or
implementing an interval-halving search

Results show that for the risk to be below 10% for (µ = 0, c = 3) requires
n ≈ 100, producing a risk of 10.3 and a classification error of 8.9.
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Robustness evaluation (FYI)

In the foregoing π(xn) is generated by the working model (e.g., the assumed prior G and data model f )

If it is different from the true model, it generates Regret relative to the truly optimal rule

Regret can be evaluated using equation (1) with the decision rule determined by the working model, but
the distribution for xn and the function π(xn) produced by the true model,

Regret = (Working model risk) - (Bayes Risk)

Or, alternatively compute

Relative Regret =
Regret

Bayes risk
=

Working model risk

Bayes Risk
− 1.0 = RelRisk− 1.0.

With π̃(xn) the posterior under the true model and δ̃(xn) the optimal rule for it, Ẽ computes under the
true model for X,

Regret = Ẽ(min[π(Xn), c · {1− π(Xn)}])− Ẽ(min[π̃(Xn), c · {1− π̃(Xn)}]) ≥ 0

= Ẽ{π̃(Xn)I{π(Xn)<π∗<π̃(Xn)} + c(1− π̃(Xn))I{π̃(Xn)<π∗<π(Xn)}}
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Frequentist risk and regret (FYI)

Frequentist risk and regret is a special case with θ ≡ θ0 fixed at a single value (equivalently, a prior with a
point mass at θ0)

For this working model, the optimal rule is δ̃(xn) ≡ I{θ0∈D1:2}

For example, let c = 1, D1:2 = [0,∞) and θ > 0, and a working model wherein
π(xn) ≥ 0.5 ⇐⇒ x̄n ≥ 0. Then, the regret is the probability of mis-classification, and with θ0 > 0 we

have, pr(π(xn) < 0.5 | θ0) = pr(x̄n < 0 | θ0) = Φ

(
−
√

nθ0
σ

)
, which is (1 - Power).

With θ0 = 0, c = 1, the Type I error is always α = 0.5. For a general c, α = 1/(1 + c) and so to
produce Type I error = α0, use c = (1− α0)/α0.

This relation shows that selecting the nominal α0 can be justified by the loss function in equation (1). For
α0 = 0.05, c = 19 (= .95/.05), a 19 : 1 penalty for false rejection relative to false non-rejection.

Going in the other direction, π∗(c) = 0.98 produces c = 49, a large penalty.

In general, the Type I error associated with an informative prior and a loss function determined value of c
will not be close to a traditional α0, and forcing equality by changing c will degrade Bayesian performance
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Bayesian Monitoring: The BLOCK HF trial13

Intention-to-treat was the primary analysis for all outcomes

The trial used an adaptive Bayesian design allowing a maximum of 1200
patients, featuring sample size re-estimation and two interim analyses with
pre-specified, adaptive rules for stopping enrollment or terminating follow-up

These rules addressed patient safety, futility, and eventual trial success

The safety stopping rule, assessed at each interim analysis, was based on the
posterior probability of an increased risk of primary endpoints in patients with
BiV pacing relative to RV pacing

Enrollment and follow-up termination was based on the predictive probability of
passing the primary objective (PP0) or on futility (PPR), projected to when all
subjects had been followed for at least 12 months

Low information priors were used

13
Curtis et al. (2013). Biventricular Pacing for Atrioventricular Block and Systolic Dysfunction. NEJM, 368:

1585–1593.
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BLOCK-HF decision table

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER 50



Post-hoc, Bayesian Monitoring of the CPCRA-TOXO trial14,15,16

(CPCRA = Community Programs for Clinical Research on AIDS)

Eligibility

◦ Either an AIDS defining illness or CD4 < 200
◦ Or, a positive titre for toxoplasma gondii

Originally designed with four treatment groups

◦ Active & placebo clindamycin, 2:1
◦ Active & placebo PYRImethamine, 2:1

The clindamycin arm was stopped after a few months,
so consider PYRI vs Placebo

14
Chaloner, Church, Louis, Matts (1993). Graphical elicitation of a prior distribution for a clinical trial. The

Statistician, 42: 341-353.
15

Carlin, Chaloner, Church, Louis, Matts (1993). Bayesian approaches for monitoring clinical trials, with an
application to toxoplasmic encephalitis prophylaxis. The Statistician, 42: 355-367.

16
Brownstein, Louis, O’Hagan, Pendergast (2019). The role judgement in statistical inference and

evidence-based decision-making. The American Statistician, doi.org/10.1080/00031305.2018.1529623.
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After-the-fact analysis of the Toxo Trial17

The DSMB monitored it in real time

Elicited priors from three HIV/AIDS clinicians, one PWA conducting AIDS
research, and one AIDS epidemiologist

Used the Cox model and adjusted for baseline CD4

‘Stopped” when the posterior probability of benefit or the posterior probability
of harm got sufficiently high

Used a variety of prior distributions, including an equally-weighted mixture of
the five elicited priors

17
Jacobson, et al. (1994). Primary prophylaxis with pyrimethamine for toxoplasmic encephalitis in patients

with advanced human immunodeficiency virus disease: Results of a randomized trial. The Journal of Infectious
Diseases, 169: 384–394.
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Elicitation

Asked about potential observables

P = pr[event in two years]

P0 = best guess for the placebo

◦ mode, median, mean

Then, distribution of [Ppyri | P0]

◦ percentiles
◦ draw a picture

Then, convert to a Cox model-relevant parameter:

θ = β1 = log(1− P0)− log(1− Ppyri )
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Elicited Priors

Red line is at the best guess for the two-year rate under placebo
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Actual TOXO Monitoring

At its meeting on 12/31/91, the DMC recommended stopping due to:

Futility: The pyrimethamine group had not shown significantly fewer
TE events, and the low overall TE rate made a statistically
significant difference unlikely to emerge

Harm: There was an increase in the number of deaths in the
pyrimethamine group relative to the placebo
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Mixture prior ⇒ Posterior Probabilities of regions
(Bayes with the mixture prior takes longer to stop)

E = exact; N = normal approximation; L = likelihood
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Observations

The elicited priors are very far from the eventual data because elicitees believed
that TE was common in the patient population and Pyrimethamine would have
a substantial prophylactic effect

Consequently, the likelihood-based (‘flat prior” Bayes) analysis gave an earlier
warning than did the Bayesian assessments due to,

High: pr(θ > 0 | data) & Low: pr(θ < log(0.75) | data)

Likely Harm Unlikely Benefit

Eventually, the data overwhelmed the elicited priors

If the elicited priors had been used in the actual monitoring,
would it have been ethical to wait so that these representatives
of PWAs, clinicians and HIV/AIDS researchers were convinced?
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Prior partitioning: Backwards Bayes
• Motivated by Mosteller&Wallace18, Carlin&Louis19 consider identifying prior

distributions that in the light of observed data would lead to various decisions,
using the CPCRA/TOXO trial20 as an example

• Partitioning uses the Bayesian framework to put bounds on priors leading to

specific decisions; a stakeholder can decide if the boundaries are so extreme in

one direction that the decision is the same for most priors

◦ This is ‘backwards Bayes’

• The approach is similar to threshold utility analysis and in the same spirit as
sensitivity analysis for non- or weakly- identified parameters

• Partitioning can be completely unconstrained, or restricted by moment or
percentile restrictions, or based on regions for parameters in a parametric prior

• ‘Pure’ or nearly pure Bayesians find this use of the Bayesian formalism close to
apostasy, but it can be effective in quantifying the strength of evidence provided
by a data set

• The following figure display regions, conditional on the observed data, where
there is or is not a prior distribution that permits or does not permit rejecting H0

18
Mosteller, Wallace (1964). Inference and Disputed Authorship: The Federalist. Addison–Wesley.

19
Carlin, Louis . (1995) Identifying prior distributions that produce specific decisions, with application to

monitoring clinical trials. In, Bayesian Analysis in Statistics and Econometrics: Essays in Honor of Arnold Zellner
(eds. D Berry, K Chaloner, J Geweke), 493–503. Wiley, New York.

20
Jacobson, et al. (1994). Primary prophylaxis with pyrimethamine for toxoplasmic encephalitis in patients

with advanced human immunodeficiency virus disease: Results of a randomized trial. The Journal of Infectious
Diseases, 169: 384–394.
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Prior tail area regions where there is/(is not) a prior
distribution that permits rejecting H0 : θ = 0
(Conditional on the TOXO trial data)
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• aL = prprior{θ < log(0.75)}; aU = prprior (θ > 0)

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER 59



Priors: On what? (and consequences)

S(t) = pr(event time > t) ∼Beta(1, 1) (flat)

If S(t) = S(t | λ) = e−λt ,

◦ Prior on λ = − 1
t

log {S(t | λ)} (exponential with hazard t)

◦ Prior on S(2t) = prior on S2(t) {is Beta
(

1
2
, 1
)
}

Going the other way, a flat prior on λ induces an improper prior with density
proportional to 1

st
on S = e−λt

Etc.

Morals:

◦ Explore consequences of priors
◦ Elicit priors for features that an expert might know something about
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Prior for two studies
Have two studies, each with a treatment effect wrt independent comparators
that are statistically identical

(θ1, θ2) = treatment effects for studies 1 and 2, with ‘1’ preceding ‘2’

◦ The θs could be log(odds)

η =
θ1 + θ2

2
, δ =

θ2 − θ1

2
η = the average treatment effect

δ = the between study difference in treatment effects

θ1 = η − δ, θ2 = η + δ

Priors η ∼ (µ, τ2), δ ∼ (0, ξ2)

cov(θ1, θ2) = cov{(η − δ), (η + δ)}= τ2 − ξ2

ρ = cor(θ1, θ2) =
τ2 − ξ2

τ2 + ξ2

If τ2 6= ξ2, (θ1, θ2) are correlated, and information on θ1 produces an updated
prior for θ2 even though there is no direct information

A small ξ allows δ to be stochastically small (similar treatment effects) while

retaining appropriate uncertainty on η

◦ For binomial responses, need to use MCMC, but we can do that!
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Don’t trust your intuition

Shrinkage ‘towards the mean’ can be

◦ ‘Away from’ if the distribution is multi-modal, univariate
◦ ‘Away from’ or ‘beyond’ when evaluating the univariate consequences of

bivariate shrinkage
◦ ‘Almost anything’ for models with correlated random effects

Here are health services, multivariate measurement error, and malaria prevalence
examples
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Observed and Predicted Deviations for Primary Care Service:
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Don’t trust your intuition
Multivariate Measurement Error: Simulation example

Xt and Xo are vector regressors

◦ For example, one coordinate is the exposure of interest and the other is a
potential confounder, or data on 6 dietary components

Measurement error, especially correlated error, can confound confounding
adjustments and standard measurement error adjustments

Formal modeling appropriately accounts for the measurement error process,
commonly producing non-intuitive adjustments

Information on the joint measurement error distribution is necessary
Coefficients (×104)

Regressor Unadj. Univ adj. Mult. adj. True

sodium 7 19 23 21
potassium 7 14 -20 -15

calcium 3 7 11 11
caffeine -19 -30 -31 -30
alcohol 903 1474 1528 1528

bmi 1348 1443 1645 1657

Measurement Error: High, Moderate, Low

De-attenuation AND crossing 0
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Nchelenge Zambia Malaria Prevalence: Independent RE model with covariates

Residuals shrink towards 0
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Nchelenge Zambia Malaria Prevalence: Conditional AutoRegressive model with covariates

Residuals can cross over 0
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Informative sample size in Bayesian analysis
The deck may be stacked against high-variance units

• The posterior mean (PMk ) for a Gaussian/Gaussian, Bayesian model is:

PMk = BkXkβ + (1− Bk )Yk

Bk = σ2
k/(σ2

k + τ2)

a weighted average of the direct estimate (Yk ) and a regression prediction
(Xkβ) with larger Bk for the relatively unstable direct estimates

• β̂mle
gives more weight to the units with relatively stable direct estimates; the

high Bk units that ‘care about’ the regression model have less influence, and if
the model is mis-specified, PMk will be unfair to them

• Giving them relatively more weight will pay variance, but can improve MSE21,22

Hospital Profiling

• Practice makes perfect: Small hospitals may have poorer performance than
larger, for example their performance for riskier patients is worse, and giving
more weight to the higher volume hospitals when estimating the risk-adjustment
creates some unfairness

Small Area Estimates (SAEs) & Subgroups

• The true regression slopes may depend on population size, and
predictions/inferences for the smaller domains will be degraded if β̂ is the MLE

21
Jiang, Nguyen, Rao (2011). Best Predictive Small Area Estimation. JASA, 106: 732-745

22
Chen, Jiang, Nguyen (2015). Observed Best prediction for small area counts. Journal of Survey Statistics

and Methodology, 3: 136–161.
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MSE Comparisons
mmle vs mMssBias vs αopt compromise

• Compromise: αopt× MMLE + (1− αopt)×ObservedBestPredictor

• αopt minimizes MSE(α) as a function of the estimated SSqbias increment
associated with mmle weights relative to mMSSbias weights:

∆̂2 =
∑
k

(
θ̂mmle
k − θ̂obpk

)2

• For the Gaussian model, assuming (incorrectly) that the Bk don’t change

∆̂2 =
∑
k

B2
k

{
Xk

(
β̂
mmle − β̂obp

)}2
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Gaussian/Gaussian (best case for MMLE)

ρ ≈ cor(θk , nk )

0.0 0.2 0.4 0.6 0.8

0.07

0.08

0.09

0.10

n ~ log−uniform

ρ

SM
SE

/K

EBLUP (MLE)
EBLUP (REML)
OBP
Compromise

0.0 0.2 0.4 0.6 0.8

0.10

0.15

0.20

0.25

n ~ 2 point discrete dist.

ρ

SM
SE

/K

EBLUP (MLE)
EBLUP (REML)
OBP
Compromise

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER 69



Ranking: A non-standard goal
Ranking Standardized Mortality Ratios, SMRs

SMR =
observed deaths

expected deaths

Expecteds from a case mix adjustment model

Rank 3459 dialysis providers using 1998 USRDS data

Large and small providers, treating from 1 to 355 patients per year

So, the expected deaths and standard errors of the estimated SMRs have a very
broad relative range
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The Ranking Challenge

Ranking estimated SMRs is inappropriate, if the SEs vary over providers

◦ Unfairly penalizes or rewards providers with relatively high variance

Hypothesis test based ranking: H0 : SMRunit = 1

◦ Unfairly penalizes or rewards providers with relatively low variance

Therefore, need to trade-off signal and noise

However, even the optimal estimates can perform poorly
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USRDS, SMRs: MLEs and exact CIs (1/40, ordered MLEs)

•••••••••
•••••••••••••

••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••
••••••••

•••
•
•

Sampling variability has a wide range over units

Difficult to trade-off signal and noise ‘by hand’
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Posterior distribution: original and stretched scale
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ρ̂mle , ρ̂pm, SE(ρ̂mle) using USRDS dialysis data 23

middle = MLE :: whisker = SE :: bottom = Posterior Mean

Ranks for ρ̂mle are different from those for ρ̂pm

23
Lin R, Louis TA, Paddock S, Ridgeway G (2009). Ranking USRDS, provider-specific SMRs from 1998–2001.

Health Services Outcomes & Research Methodology, 9: 22-38. DOI 10.1007/s10742-008-0040-0.
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Optimal Ranks/Percentiles24

The ranks are,

Rk (θ) = rank(θk ) =
K∑
j=1

I{θk≥θj}

P = R/(K + 1)

The smallest θ has rank 1 and the largest has rank K
The optimal SEL estimator is,

R̄k (Y) = Eθ|Y[Rk (θ) | Y] =
K∑
j=1

pr(θk ≥ θj | Y)

Optimal integer ranks are, R̂ = rank(R̄)

R̂k (Y) = rank(R̄k (Y)); P̂k = R̂k/(K + 1)

Other loss functions, for example P (above γ)/(below γ) are more relevant in
genomics and other applications wherein the goal is to identify the extremes

24
Shen W, Louis TA (1998). Triple-goal estimates in two-stage hierarchical models. J. Royal Statistical

Society, Ser. B, 60: 455-471.
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Relations among percentiling methods
1998 USRDS data
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Performance Comparisons: Gaussian/Gaussian with σ2k
Lin et al. (2006) Bayesian Analysis

Percentiles computed from
Posterior Posterior

Variation Mean Mean MLE
in σ2

k Optimal log(SMR) SMR SMR

None 516 516 516 516
medium 517 517 534 582

high 522 525 547 644

SEL performance: 104 × E(Pest − Ptrue)2

(the no-information value is 833)

Robustness
When K is ‘not small,’ can use a (smooth) non-parametric or semi-parametric
prior
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Robustness: with large K , can us a (smooth) NP Prior
Smoothed NP - - - - - Parametric

2 1 0 1 2
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0
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0

Posteriors for , 1998
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N(µ, )
MCMC Posterior
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Shrinkage can be controversial
Ash et al. (2012), COPSS White Paper

For example the SMR for the center with greatest uncertainty is pulled all the
way back to 1.0, ‘hiding’ the poor performance
It is especially controversial when sample size might be informative in that low
volume (high variance) units tend to perform relatively poorly (practice makes
perfect) and that shrinkage masks this feature
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Classification (above γ)/(below γ) loss (FYI)

Lin et al. (2006) Bayesian Analysis

In some contexts interest is in identifying the several highest (top 0.1%) or
lowest true ranks

Examples include SNP identification, dialysis center performance, poverty rates
in small areas, . . .

For 0 < γ < 1, minimize a normalized false detection rate (FDR), denoted ‘OC’

OC(γ | Y) =
pr(P > γ | Pest

k ≤ γ,Y)

1− γ

For optimal estimates, let

πk (γ) = pr(Pk > [γK ]) (see below for an efficient computation)

P̃k (γ) = rank{πk (γ)}/(K + 1)

As do the R̄k (Y), the πk (γ) quantify the strength of the ranking signal
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πk(0.8 | Y) versus P̃k(0.8) for 1998
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Posterior probability based on full data set
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q=0.90
q > 0

Optimal percentiles and posterior probabilities computed with the single year
model (φ ≡ 0) and the AR1 model (φ̂ = 0.90)
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Histogram Estimates26

The setup:

θ1, . . . , θK iid G

Yk |θk ∼ fk (y |θk )

GK(t|θ) =
1

K

∑
I{θk≤t}, the EDF of the θk

Note the finite population goal

The optimal SEL estimate is:

ḠK (t|Y) = E [GK (t;θ)|Y] =
1

K

∑
P(θk ≤ t|Y)

The optimal discrete SEL estimate is:

ĜK (t | Y) : mass 1/K at Ûj = Ḡ−1
K

(
2j − 1

2K
| Y
)

An empirical version of Efron’s Oracle, see25

25
Efron B (2019). Bayes, Oracle Bayes, and Empirical Bayes (with discussion). Statistical Science,
34: 177–235.

26
Shen W, Louis TA (1998). Triple-goal estimates in two-stage hierarchical models. J. Royal Statistical

Society, Ser. B, 60: 455-471.
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Associated mean and variance produced by ḠK

(and approximately those by ĜK )

Let, θpmk = E(θ | Y)

mean =

∫
tdḠK (t) =

1

K

∑
θpmk = θpm•

variance =

∫
t2dḠK (t)− (θpm• )2

=
1

K

∑
V (θk | Y) +

1

K

∑(
θpmk − θ

pm
•
)2

The histogram of the θpmk is under-dispersed because it represents the second
term, but not the first term

So, use a histogram based on the mass points for ĜK

If the model is correct, Ḡ and Ĝ are consistent estimates of G with appropriate
location, spread and shape
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Gaussian Simulations: GR = ĜK , Need to get the spread right
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Getting the spread right

mu theta

Y

a

b

f

e

c = e + f

   

Figure �� A triangle demonstration of the value of shrinkage

��
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A log-normal prior
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Gaussian mixtures, prior variance, τ 2 = 1.25
Columns are modeling priors

σ2 << 1.0

σ2 ≡ 1.0

σ2
k , GM = 1.0
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DP-1 and DP-2 = Dirichlet process priors; SBR = Smoothing by Roughening
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Math Achievement27 (FYI)

Data are math achievement scores for 7185 students in 160 schools from the
dataset ‘MathAchieve’ in the R package nlme

Histograms produced by a Bayesian model to produce school-level effects using
a Gaussian model for student scores conditional on the school effect and either a
Gaussian or a Dirichlet Process (DP) prior for the school effects

Histograms are for the full sample and the non-minority student sub-sample

‘Direct’ are school-level effects w/o shrinkage (a flat prior on them)
‘Bayes Gaussian’ are school-level effects via a Gaussian prior and
‘histogrammed’
‘Bayes/DP’ are school-level effects via a Dirichlet Process prior and
‘histogrammed’

27
Paddock SM, Ridgeway G, Lin R, Louis TA (2006). Flexible Prior Distributions for Triple-Goal Estimates in

Two-Stage Hierarchical Models. Computational Statistics and Data Analysis, 50: 3243-3262.

Why Bother With Bayes? T. A. Louis: JHU/Biostatisics & FDA/CDER 88



Histogram estimates for math achievement (FYI)
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Figure 5: Empirical distribution of (a) observed school-level average math achievement scores;
(b) GR estimates derived under a Gaussian distribution for θj; (c) GR estimates derived under
a Dirichlet process model for G for the full sample. (d)-(f) are the analogous figures for the
analysis of the subset of non-minority cases.

31
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The triple-goal, GR Estimates28 (FYI)

To produce θ̂ with a histogram that is a good estimate of the empirical
distribution of the underlying θ-values, use

θgrk = UR̂k

Ûj = Ḡ−1
K

(
2j − 1

2K
| Y
)

with R̂k the optimal, integer ranks {R̂k , R̃k (γ), . . . }

The θgr are triple-goal:

Ranking them produces optimal ranks
Their histogram is optimal
SEL for estimating individual θs is higher than for the posterior means,
but the penalty is small and GR estimates retain much of the Bayes
advantage over MLEs

They allow one set of estimates to be released and used for all three goals

They support subgroup identification

28
Shen W, Louis TA (1998). Triple-goal estimates in two-stage hierarchical models. J. Royal Statistical

Society, Ser. B, 60: 455-471.
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Bayes & Multiplicity
A basic case, see also (Bayes) FDR, etc.

The prior to posterior mapping doesn’t ‘know’ about multiple comparisons

With additive (1 + 1 = 2), component-specific losses, each comparison is
optimized separately with no accounting for the number of comparisons

However, empirical Bayes or Bayes empirical Bayes links the components
because the posterior ‘borrows information”

The consequent shrinkage towards the overall mean controls multiplicity

The Bayesian structure ‘calms’ the multiplicity
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Shrinkage controls multiplicity: The K-ratio

RE ANOVA

• θ1, . . . , θK iid N(µ, τ2)

• [Yik | θk ] ind N(θk , σ
2)

• [θk | Y.k ] ∼ N

(
µ+ (1− B)(Y.k − µ), (1− B)

σ2

n

)
F = 1/B̂

Compare columns 1 and 2 (can compare all columns):

ZBayes
1vs2 = Z freq

1vs2

{
(F−1)+

F

} 1
2 =

(√
n(Y.1−Y.2)

σ̂
√

2

){
(F−1)+

F

} 1
2

The Z-score is damped by the value of the F-statistic; larger F damps less

If H0 : θ1 = θ2 = . . . = θK is true, the overall type I error is controlled because F
will be close to 1.0
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One-sided, type I error using the posterior distribution
True B = 1 (τ 2 = 0)

K single K − 1 indep. pr(B̂ = 1)
test contrasts ×100

10 0.00116 0.01038 56.3
20 0.00050 0.00943 54.3
30 0.00028 0.00796 53.5
50 0.00012 0.00562 52.7

100 0.00003 0.00267 51.9
500 0.00000 0.00009 50.8

1000 0.00000 0.00001 50.6
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Comments

The magnitude of F continuously adjusts the test statistic

For large K, under the global null hypothesis (H0 : θ1 = θ2 = . . . = θK ,
equivalently τ2 = 0),
pr(F ≤ 0) ≈ 0.5 and so pr(all Zij = 0) ≈ 0.5

The family-wise rejection rate is much smaller than 0.5, thus controlling the
type I error

‘Scoping’ is important because the type and number of components in the
analysis determines the value of µ̂ and B̂

If collective penalties are needed, use a multiplicity-explicit, non-additive loss
function (e.g., 1 + 1 = 2.5)
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Non-Additive Loss (FYI)

Unit penalties for single errors + an extra penalty for making two errors

Parameters: θ1, θ2 ∈ {0, 1}
Probabilities: πij = pr [θ1 = i , θ2 = j]

Decisions: a1, a2 ∈ {0, 1}

Loss(a, θ) : a1(1− θ1) + (1− a1)θ1

+ a2(1− θ2) + (1− a2)θ2

+ γ(1− θ1)(1− θ2)a1a2
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Optimal Decision Rule (FYI)

Decision Rule

π1+ ≤ .5, π+1 ≤ .5 a1 = 0, a2 = 0

π1+ ≤ .5, π+1 > .5 a1 = 0, a2 = 1

π1+ > .5, π+1 ≤ .5 a1 = 1, a2 = 0

π1+ > π+1 > .5 a1 = 1

a2 =

{
0, if (2π+1 − 1) < γπ00

1, if (2π+1 − 1) ≥ γπ00
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Bayes in the regulatory context
Visit, FDA Impact Story: Using Bayesian Hierarchical Models

Frequentist properties can be assessed, but timing is key

At the outset of an investigation, if there is little prior information, the
frequentist properties of the full investigation are relevant

However, a second, well-controlled study with the (possibly discounted) results

of the first study used as an informative prior that gives relatively high

probability to a non-null region, will produce an inflated type I error

If you trust the prior, compute the Type I error, but don’t pay much
attention to it

Timing of is also important in a frequentist analysis; part-way through a study
the conditional type I error will not be 0.05.

Need a trusted process

A trusted and reproducible protocol/process is needed for developing prior
distributions, making decisions, etc.

The particulars will differ from the frequentist criteria currently used by the

FDA, but the goals are the same:

◦ Valid design, conduct and analysis
◦ A trusted, transparent process for evaluating sponsor-produced designs

and results
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The Bayesian Approach to Design and Analysis

Potential benefits are substantial, but effectiveness requires expertise and care

It is very effective in generating procedures that can be evaluated for both Bayes
and frequentist properties

Analyses are guided by the laws of probability, which is especially valuable when
addressing complex, non-linear models and utilities

All (identified) uncertainties are transported to the posterior distribution

Induces probabilistic relations amongst data sources, and combining evidence

occupies the middle ground between ‘complete pooling’ and ‘no relation,’

◦ Bayes & Frequentist

H00: Unit-specific values are equal
HA: The unit-specific values are unrelated

◦ Uniquely Bayes (the key to combining evidence)

H0: Unit-specific values come from the same probability distribution;
they are different, but are ‘siblings’

Warning: The approach will not rescue poor data or a poor data model

◦ e.g., a model that fails to address selection effects, confounding, . . .

Closing mantra: There are no free lunches in statistics, but there are a large
number of reduced-price meals, many based on Bayesian recipes
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and frequentist properties

Analyses are guided by the laws of probability, which is especially valuable when
addressing complex, non-linear models and utilities

All (identified) uncertainties are transported to the posterior distribution

Induces probabilistic relations amongst data sources, and combining evidence

occupies the middle ground between ‘complete pooling’ and ‘no relation,’

◦ Bayes & Frequentist

H00: Unit-specific values are equal
HA: The unit-specific values are unrelated

◦ Uniquely Bayes (the key to combining evidence)

H0: Unit-specific values come from the same probability distribution;
they are different, but are ‘siblings’

Warning: The approach will not rescue poor data or a poor data model

◦ e.g., a model that fails to address selection effects, confounding, . . .

Closing mantra: There are no free lunches in statistics, but there are a large
number of reduced-price meals, many based on Bayesian recipes
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Bayes and Subgroups29,30,31

The SOLVD studies of left ventricular dysfunction examined the impact of the
drug Enalapril in a group of patients with congestive heart failure and low
ejection fraction

In total, 2569 patients were enrolled in the treatment trial with 1285 patients
being assigned to the treatment arm and 1284 patients being assigned to the
placebo arm

At the scheduled end of the study, 510 patients had died in the placebo group
while 452 had died in the Enalapril group

We created 12 subgroups
{gender × (age ≤ 65 vs > 65) × (ejfr 6-22, 23-29, 30-35)}

29
Henderson NC, Louis TA, Wang C, Varadhan R (2016). Bayesian Analysis of Heterogeneous Treatment

Effects for Patient-Centered Outcomes Research. Health Services and Outcomes Research Methodology, 16:
213-233. doi.10.1007/s10742-016-0159-3.

30
Wang C, Louis TA, Henderson N, Weiss CO, Varadhan R (2018). BEANZ: An R Package for Bayesian

Analysis of Heterogeneous Treatment Effect with a Graphical User Interface. Journal of Statistical Software, 85:
doi: 10.18637/jss.v085.i07.

31
BEANZ at: https://www.research-it.onc.jhmi.edu/dbb/custom/A6/ and at http://cran.r-project.org.
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Basic subgroup results for the log(hazard ratio)
Substantial shrinkage for the basic model with the SD for the between-subgroup
RE, ω ∼ Half-N(100)

Little ‘enthusiasm’ for subgroup effects

Black: Frequentist estimates and CIs

Red: Standard Bayes estimates and credible intervals

Solid vertical: Overall treatment effect
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Sensitivity analysis wrt the between-subgroup SD (ω)

b|Z | ∼ Half-N(b2)
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Stratified, basic Bayes, extended Dixon-Simon32

32
Jones, H, Ohlssen, D, Neuenschwander, B, Racine, A, Branson, M (2011). Bayesian models for subgroup

analysis in clinical trials. Clinical Trials, 8: 129–143.
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Cluster Randomized Trials

Develop an informative prior distribution for the between-cluster variance using

studies thought to have a similar variance component, and us it

Design: to find the required number of clusters for a stand-alone analysis
Analysis: to conduct a Bayesian analysis for the between cluster variance for a study

with a small number of clusters that can’t/shouldn’t stand alone
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Design and Analysis for Cluster Randomized Studies

Setting

Compare two weight loss interventions

Randomize clinics in pairs, one to A and one to B

Compute clinic-pair-specific comparisons combine over pairs

How to design and how to analyze, especially with a
small number of clinics?
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The equal sample size, unpaired case

There are K clusters

Within-cluster sample sizes are nk ≡ n

Vind = V(treatment comparison), when assuming independence

Adjust this by the between-clinic variance component, equivalently by ρ, the
Intra-class Correlation Coefficient (ICC):

Vicc = Vind × [1 + ρ (n − 1)] = Vind × [design effect]

ρ =
τ2

σ2 + τ2
(the ICC)

τ2 = the between-clinic variance

σ2 = single-observation variance
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Design and Analysis Considerations

In the paired-clinic case, to compute Vicc = V (treatment comparison), need to
account for the following variances:

Individual measurement (σ2)

◦ The trial will provide sufficient information

Between-clusters: within (τ2
w ) and between (τ2

b ) cluster pairs with

(τ2 = τ2
w + τ2

b )
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The need for an informative prior

With a small number of clusters, the trial will provide little information on τ2

and even less information on γ = τ2
b /(τ2

w + τ2
b )

Without informative priors, an ‘honest’ computation of posterior uncertainty
(one that integrates over uncertainty in τ2 and γ) will be so large as to make
results essentially useless

Therefore, either don’t do the study or use informative priors to bring in outside
information

Fortunately, other weight loss studies provide credible and informative prior

information on τ2, but not so for γ

◦ For γ, we need to rely primarily on expert opinion and sensitivity analysis
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A Bayesian Model

Use an informative, data-based prior for τ2 and a small-mean, small-variance
prior for γ

τ2 ∼ IG: = τ2
50 with τ2

95 = 2× τ2
50

[γ | ε,M] ∼ Beta(ε,M)

E(γ) = ε,V (γ) = ε(1− ε)/M

Take the ‘best estimates’ of (σ2, ρ) from other cluster-randomized studies of
weight change and obtain σ2 ≈ (0.34)2, likely ρ̂: (0.006, 0.010, 0.050)

⇒ 104 × τ2 = (7.0, 11.7, 60.8), τ 2
50 = 11.7× 10−4, τ 2

95 = 23.4× 10−4

Use ε ≈ 0.10 and a relatively large M = 15

◦ The 90th percentile is approximately 0.20
◦ Conservative in that there is little gain from pairing
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Measurement Uncertainty & Full Probability Modeling
Trend Tests that Accommodate Genotyping Errors33

A standard GWAS evaluates SNP-specific association with a phenotype (disease
status), for example by ranking SNP-specific Z-scores

However, due to technical and biological factors, genotype ‘calls” (AA, AB, BB)
can be uncertain

These errors can produce invalid or inefficient inferences

Most calling algorithms produce a ‘best’ call along with a call-specific
uncertainty measure

Many recommend not using the call if uncertainty is too large

33
Louis TA, Carvalho BS, Fallin MD, Irizarry RA, Li Q, Ruczinski I (2011). Association Tests that

Accommodate Genotyping Errors. pp. 393–420 in, Bayesian Statistics 9. (JM Bernardo, MJ Bayarri, JO Berger,
AP Dawid, D Heckerman, AFM Smith, M West, Eds.), Oxford University Press, Oxford UK.
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Sense/Antisense Information

SNP 11905 SNP 18233 SNP 8548 SNP 7

Genotype calls ranging from ‘difficult’ to ‘easy’

Most SNPs are ‘easy’ (like #7), some are uncertain, some are essentially
hopeless
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Quantify and Retain Genotype Uncertainty

A test statistic should take genotype uncertainty into account via a vector of

genotype posterior probabilities

◦ Deterministic calls have a 1 in a single position

Efficiency is measured by the correlation between the true genotype and
genotype probabilities

HapMap Gold Standard

Compute correlations between the gold standard and standard ‘best’ calls,
probability vector calls and ‘best’ as the mode of the probability vector

Posterior probabilities from Carvalho et al. (2009)34

34
Carvalho B, Louis TA, Irizarry RA (2009). Quantifying Uncertainty in Genotype Calls. Bioinformatics, 26:

242-249.
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Correlation(Bayes, Gold)/Correlation(Standard, Gold)
Lesson: Build an uncertainty model and use Bayesian processing
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Correlation(Bayes, Gold)/Correlation(ModalBayes, Gold)
Lesson: Percolate uncertainty all the way through
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