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Software Overview

Bayesian Analysis in SAS/STAT®Software
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Software Overview

Bayesian Analysis in SAS/STAT®Software

SAS/STAT software includes procedures mainly for statistical analysis and

visualization. We take a number of routes in providing Bayesian capabilities
in the software:

@ In model-specific procedures that provide both frequentists and
Bayesian solutions:

» PROC PHREG, PROC GENMOD, PROC LIFEREG, PROC FMM, etc.
» The BAYES statement

» A set of frequently used prior distributions (noninformative, Jeffreys’)
@ General simulation procedure
» PROC MCMC
o Fully Bayesian procedures for a class of models:
» PROC BGLIMM for generalized linear mixed models (GLMMs)
* New in SAS/STAT 15.1 (9.4 TS1M6, the 6th maintenance release)
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Software Overview

SAS 9.4

Release dates and versions of SAS 9.4:

Version Release Date STAT name
9.4 July 2013 STAT 123
9.4m1  December 2013 STAT 13.1
9.4m2  August 2014 STAT 13.2
9.4m3  July 2015 STAT 14.1
9.4m4  November 2016 STAT 14.2
9.4m5  September 2017 STAT 14.3
9.4m6  November 2018 STAT 15.1
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Software Overview

Version Information

To find out your version:

proc product_status;
run;

which produces something like:

For SAS/STAT ...
Custom version information: 15.1
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RECIVEHS
PROC MCMC is a General Sampling Procedure

@ Your program represents how you would write the statistical model - it
is similar to PROC NLMIXED
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PROC MCMC is a General Sampling Procedure

@ Your program represents how you would write the statistical model - it
is similar to PROC NLMIXED

@ You must specify all aspects of a statistical model: parameters, prior
distributions, random effects, how random effects enter the model,
likelihood function, and so on.

e Statements simplify the specification of your statistical model, provide
coding convenience, and make the program readable.

@ Use DATA step programming statements in more complex scenarios
where the standard distributions or functions are inadequate.
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FRIG NSNS
Generality of PROC MCMC

The MCMC procedure fits

single-level or multilevel (hierarchical) models

linear or nonlinear models, such as regression, survival, ordinal
multinomial

multivariate analysis, latent variable models, state space models, PK

models

missing data problems
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FRIG NSNS
Generality of PROC MCMC

The MCMC procedure fits

e single-level or multilevel (hierarchical) models

@ linear or nonlinear models, such as regression, survival, ordinal
multinomial

e multivariate analysis, latent variable models, state space models, PK
models

@ missing data problems

° ...
In addition, PROC MCMC supports
@ SAS DATA step programming language

o user-defined sampling algorithms, functions, distributions.

@ prediction
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Input Data Set

PROC MCMC takes in a SAS data set, which is a rectangular structure
that has variables (columns) and records (rows).

Name

Alfred
Alice
Barbara
Carol
Henry
James
Jane
Janet

Missing values are coded as dots.

69.
56.
65.
62.
63.
57.
59.
62.

Height

0100 W U1 0w o1 O

Weight

112.
84.
98.

102.

83.
84.
112.

o O O w;m

o O

9/131



FRIG NSNS
Syntax Reflects the Statistical Model

weight; ~ N(uj,var = 02), i=1,...,n
pi = o+ B1 - height;

Bo,B1 ~ N(0,var = 100)

02 ~ iGamma(shape = 2,scale = 2)

This is similar to what all general-purpose Bayesian software packages
(BUGS, NIMBLE, Stan, etc) strive for.

proc mcmc data=class;
parms b0 bl s2;
prior b0 bl ~ normal(0, var=100);
prior s2 ~ igamma(shape=2, scale=2);
mu = b0 + bl * height;
model weight ~ normal (mu, var=s2);
run;
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FRIG NSNS
Procedure Offers Modeling Flexibility

weight; ~ t(u,sd=o0,df=3) i=1,...,n
pi = Bo+ B height;
Bo,P1 ~ N(O,var =100)
o~ uniform(0, 25)

proc mcmc data=class seed=1 nbi=5000 nmc=10000 outpost=reglut;
parms bO bl sig;
prior b0 bl ~ normal(0, var=100);
prior sig ~ uniform(0, 25);
mu = bO + bl * height;
model weight ~ t(mu, sd=sig, df=3);
run;
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RECIVEHS
DATA Step Language Offers More Flexibility

weight; ~ N(pj,var=02), i=1,...,n
{ a+ 1 - height; if height; < 6

Hi a + B2 - height; if height;, > 6

proc mcmc data=class;
parms bO bl b2 s2 theta;
prior b: ~ normal(0, var=100);
prior s2 ~ igamma(shape=2, scale=2);
prior theta ~ uniform(0, 200);
if height < theta then
mu = bO + bl * height;
else
mu = bO + b2 * height;
model weight ~ normal(mu, var=s2);
run;
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FRIG NSNS
Compare to BUGS

In WinBUGS, you see the entire data set and work with the matrix (do
indexing explicitly, for example).

model
{

height[] weight[] for(i in 1:19) {

gz.g 1;2'2 mu[i] = b0 + bl * height[i]
. . weight[i] ~ dnorm(mu([i], tau)
65.3 98.0 )
.és 5 112.0 b0 ~ dnorm(0, 0.1)
. ' bl ~ dnorm(0, 0.1)
END

tau ~ gamma(0.1, 0.1)
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FRIG NSNS
Compare to BUGS

In PROC MCMC, you work with variables (think one record at a time).

height weight
69.0 112.5 prior b0 bl ~ normal(0, prec=0.1);
56.5 84.0 prior tau ~ gamma(0.1, iscale=0.1);
65.3 98.0 mu = b0 + bl * height;

model weight ~ dnorm(mu, prec=tau);
66.5 112.0

The variables height and weight are filled in with data set values as
PROC MCMC processes the input data set.

The variable mu is calculated on the fly.
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RECIVEHS
Looping Over the Data Set

At each iteration, PROC MCMC steps through the data set, record by
record:

@ resolves symbols and processes programming statements

@ accumulates the loglikelihood

Obs Height Weight proc mcmc data=input;
( 1 69.0 112.5 ]«——\ prior;
2  56.5 84.0 {progm stmt;
3  65.3 98.0 model ;
. run;
19  66.5 112.0

at the top of the data set
log w(0]y) = log(f(y110))
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RECIVEHS
Looping Over the Data Set

At each iteration, PROC MCMC steps through the data set, record by
record:

@ resolves symbols and processes programming statements
@ accumulates the loglikelihood

Obs Height Weight proc mcmc data=input;
1 69.0 112.5 prior;
2 56.5 84.0 progm stmt;
3 65.3 98.0 model;
500 run;
[ 19 66.5 112.0 J

at the last observation, the prior is included

log m(0]y) = log((0)) + >_i_; log(£(il6))
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RECIVEHS
Sampling Algorithm Hierarchy

Continuous Discrete
Parameters Parameters
Users First User-Defined Samplers
Conjugate Conjugate
When Applicable Direct Direct
Inverse CDF

RWM Discrete RWM
RWM-t Geometric RWM
HMC
NUTS
slice

All Others

Algorithms are multithreaded for fast performance.
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FRIG NSNS
Programming Order Matters

PROC MCMC relies on SAS programming language, hence the order
matters.

mu = beta0 + betal * x;
model y ~ normal(mu, var=s2);

is different from

model y ~ normal(mu, var=s2);
mu = betal0 + betal * x;
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This means that you can reuse the same symbol in a program:

mu = betal0 + betal * x;

model y ~ normal (mu, var=s2);
mu = alphaO + alpha2 * y;
model z ~ normal (mu, var=sz2);

or

if lambda ne O then

z = (y**lambda - 1) / lambda;
else

z = log(y);
model z ~ normal (mu, var=s2);
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Minimize Redundant Computations

Most runtime is spent on executing programming statements over and over
again, at each iteration for every observation.
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Most runtime is spent on executing programming statements over and over
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@ constant terms, ignored after initialization.

BEGINCNST;
w = 3;
ENDCNST;
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Minimize Redundant Computations

Most runtime is spent on executing programming statements over and over
again, at each iteration for every observation.

@ constant terms, ignored after initialization.

BEGINCNST;
w = 3;
ENDCNST;

@ redundant computations not carried out for every record:

BEGINNODATA;
tau = 1/sigma2;
ENDNODATA ;
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Features Relevant to Pharma Applications

Truncation and Censoring

Non-standard Distributions

Multivariate and Categorical Distributions
Hierarchical Models

Missing Data

Posterior Prediction

19/131



RECIVEHS
You Can Specify Truncated Distributions

@ Normalized distribution with bounds.
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RECIVEHS
You Can Specify Truncated Distributions

@ Normalized distribution with bounds.

e Univariate distributions support (optional) LOWER= and UPPER=
bounds.

prior alpha ~ n(0, sd=10, lower=0);
prior b ~ expon(scale=100, lower=100, upper=2000) ;
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RECIVEHS
You Can Specify Truncated Distributions

@ Normalized distribution with bounds.

e Univariate distributions support (optional) LOWER= and UPPER=
bounds.

prior alpha ~ n(0, sd=10, lower=0);
prior b ~ expon(scale=100, lower=100, upper=2000) ;

@ The bounds can be (functions of) random variables:

prior beta ~ n(0, sd=10, lower=alpha);
prior gamma ~ n(0, sd=10, lower=alpha * beta);
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PROC MCMC
Or Work With Censored Data

@ Unobserved (missing) data that we know lie within some bounds but
can't observe them

21/131



PROC MCMC
Or Work With Censored Data

@ Unobserved (missing) data that we know lie within some bounds but
can't observe them

@ Univariate distribution support CLOWER= and CUPPER= censoring
option:

model y ~ normal (mu, sd=1, clower=cl, cupper=cr);
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PROC MCMC
Or Work With Censored Data

@ Unobserved (missing) data that we know lie within some bounds but
can't observe them

@ Univariate distribution support CLOWER= and CUPPER= censoring
option:

model y ~ normal (mu, sd=1, clower=cl, cupper=cr);

Missing y values become parameters and sampled accordingly.
The censoring indicators, ¢/ and cr, can be missing (left-, right-,
interval censoring).

@ You can also use the marginal approach to model censored data (see
PROC MCMC documentation)
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PROC MCMC
Non-Standard Distribution

You can specify non-standard distribution in PROC MCMC.
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Non-Standard Distribution
You can specify non-standard distribution in PROC MCMC. Suppose that a
distribution has the following density specification:
w(p) o pH(1—p)~*
= log(m(p)) = —(log(p) + log(1 — p))
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PROC MCMC
Non-Standard Distribution

You can specify non-standard distribution in PROC MCMC. Suppose that a
distribution has the following density specification:

w(p) o pH(1—p)~*
= log(7(p)) = —(log(p) + log(1 — p))

You use the GENERAL function in PROC MCMC to specify the prior
distribution:

proc mcmc data=trials seed=17 nmc=20000 outpost=HalBin;
parm p 0.5;
lprior = -(log(p) + log(l-p));
prior p ~ general(lprior, lower=0, upper=1);
model event ~ binomial(mn,p);
run;
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Direct Simulation

You can use PROC MCMC to draw samples from a joint distribution with

marginal and conditional specifications (without data):

data a; run; /* make an empty data set */

proc mcmc data=a seed=79467 nmc=20000 outpost=two_out;
parm s2 mu;
prior s2 ~ cauchy(0, 5, lower=0); ! o> ~ m(0?)
prior mu ~ n(0, var=s2); ! pu ~ m(u|o?)
model general(0) ;

Tun;
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Direct Simulation

You can use PROC MCMC to draw samples from a joint distribution with

marginal and conditional specifications (without data):

data a; run; /* make an empty data set */

proc mcmc data=a seed=79467 nmc=20000 outpost=two_out;
parm s2 mu;

prior s2 ~ cauchy(0, 5, lower=0); ! o?

~ m(0?)
prior mu ~ n(0, var=s2); ! pu ~ m(u|o?)
model general(0) ;
Tun;
(; 5‘0 1(;0 1_;:0 2(;0 ‘ ) ‘

0 20 40
<D
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Multivariate or Categorical Distributions

PROC MCMC also supports the following distributions:
dirich: Dirichlet

iwish: inverse-Wishart

°
°

e mvn: multivariate normal
@ multinom: multinomial
°

table: categorical
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PROC MCMC
Model Response Variables (Likelihood Function)

MODEL dependent-variable-list ~ distribution;

specifies the likelihood function. The dependent variables can be

o data set variables

model y ~ normal(alpha, var=1);
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PROC MCMC
Model Response Variables (Likelihood Function)

MODEL dependent-variable-list ~ distribution;

specifies the likelihood function. The dependent variables can be

o data set variables

model y ~ normal (alpha, var=1) ;

o functions of data set variables

w = log(y);
model w ~ normal(alpha, var=1);

You can specify multiple MODEL statements, one for a response variable:

normal (mu, var=s2_h);
normal (b0 + bl * height, var=s2_w);

model height
model weight
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PROC MCMC
Use RANDOM Statement for Random Effects

Specify a random-effects model is fairly straightforward:

proc mcmc data=schools nmc=5000 seed=2157;
parm mu s2;
prior mu ~ n(0, sd=1000); ! u ~ N(0, 1000)
parm s2g ~ normal(0, sd=5, lower=0); ! 02 ~ half — normal
random theta ~ n(mu, var=s2g) subject=ID; ! 6; ~ N(u, o°)
model y ~ normal(theta, sd=s2y); ! y; ~ N(0;, o7)
run;
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You can specify complex multilevel random-effects models:

multiple random effects

nested or non-nested hierarchical models
random-effects with non-normal prior
nonlinear models

various latent class models

autoregressive or spatially-distributed random effects
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You can specify complex multilevel random-effects models:

multiple random effects

nested or non-nested hierarchical models
random-effects with non-normal prior
nonlinear models

various latent class models

autoregressive or spatially-distributed random effects

For generalized linear mixed-effects models, PROC BGLIMM offers an
easier alternative.

27 /131



RECIVEHS
Missing Data

e Missing values are represented using a period (.) in SAS data sets.
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model y ~ n(mu, var=1);

Each missing y becomes a parameter and is sampled. This is
equivalent to Missing at Random (MAR).
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Missing Data
e Missing values are represented using a period (.) in SAS data sets.
@ Missing response values are modeled by default:
model y ~ n(mu, var=1);

Each missing y becomes a parameter and is sampled. This is
equivalent to Missing at Random (MAR).

e PROC MCMC supports partial missing:

array datal[3] y1 y2 y3;
model data ~ mvn(mu, Sigma);

or

1llike = f(y1, y2, y3);
model yl1 y2 y3 ~ general(llike);

You can have partial missing in any of the response variables.
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Various Missing Data Scenarios

@ You can carry out a complete-case analysis

proc mcmc ... missing=CC;

PROC MCMC discards all records with missing values. This is
equivalent to Missing Completely at Random (MCAR).
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Various Missing Data Scenarios

@ You can carry out a complete-case analysis

proc mcmc ... missing=CC;

PROC MCMC discards all records with missing values. This is
equivalent to Missing Completely at Random (MCAR).
@ You can also model Missing Not at Random (MNAR) data

» selection model approach
> pattern mixture approach

@ Or an all-case analysis
proc mcmc ... missing=AC;

This gives you the control on how to handle the missing values directly.
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Posterior Prediction

Sample Ypred from

Tpredl®) = [ T¥preal6:9)7(01y)d0
There are three ways to do that in PROC MCMC:

@ In-procedure approach
@ Missing data approach
@ Use the PREDDIST statement

30/131



PROC BGLIMM
Outline

© Software Overview

e PROC BGLIMM
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Model-Specific Bayesian Procedures

SAS/STAT has two such procedures:

e PROC BCHOICE: Bayesian discrete choice models
e PROC BGLIMM: Bayesian generalized linear mixed models

Both procedures use model-specific algorithms to draw samples from the
joint posterior distribution.
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Model-Specific Bayesian Procedures

SAS/STAT has two such procedures:

e PROC BCHOICE: Bayesian discrete choice models
e PROC BGLIMM: Bayesian generalized linear mixed models

Both procedures use model-specific algorithms to draw samples from the
joint posterior distribution.

PROC BGLIMM was release in SAS/STAT 15.1.
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PROC BGLIMM
Mixed Models

A mixed model (random-effects) is a model that contains fixed and random
effects.

Y = XB+Zy+e
~v ~ N(0,G)
e ~ N(O,R)
the parameter 3 is considered fixed and ~ (random effects) are random.

Estimation (frequentist) is achieved by maximizing the marginal likelihood
of the fixed-effects parameter while integrating out the random effects.
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RESSECERI
Mixed Modeling Procedures in SAS

@ PROC MIXED fits linear mixed-effects models:

Y=XB+Zv+¢€ ~~N0,G) e~ N(0,R)
@ PROC GLIMMIX fits generalized linear mixed-effects models:

EYY =g} (n) =g~ (n=XB +Zv)
where 7 is the linear predictor and g~1(-) is the inverse link function
@ PROC NLMIXED includes nonlinear capabilities:

» Y relates to 1 via nonlinear transformation
» the random effects enters the model nonlinearly
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RESSECERI
Bayesian Approach

The Bayesian paradigm (7(0|Y) o« 7(0) - L(Y; 0)) fits the same class of
models but treats every parameter, fixed effect or random effect, as
random:

Y = XB+Zvy+ € same likelihood function
B ~ w(B)

v ~ N(0,G) same prior on RE

G ~ 7(G)

R ~ n(R)

The Bayesian approach estimates the joint posterior of
(8,7, R, G|Y, X, Z) and infers from the marginal posterior 7(3|Y, X, Z).
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Mixed Modeling Procedures

Likelihood ) Linear )
Function RE Dist Predictor Hierarchy

MIXED Normal Normal X3+ Z~ Nested & Non-Nested

GLIMMIX GLM Normal X3+ Z~ Nested & Non-Nested
NLMIXED  General  Normal  General Nested

Nested students within classes.

Non-Nested students taking lessons from different teachers.
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PROC MCMC

Likelihood . Linear .
Function RE Dist Predictor Hierarchy
MIXED Normal Normal X3+ Z~ Nested & Non-Nested

GLIMMIX GLM Normal X3+ Z~ Nested & Non-Nested
NLMIXED  General Normal  General Nested

MCMC General General General  Nested & Non-Nested

PROC MCMC offers flexibility.
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PROC BGLIMM
Likelihood : Linear :
Function RE Dist Predictor Hierarchy

MIXED Normal Normal X3+ Z~ Nested & Non-Nested
GLIMMIX GLM Normal X3+ Z~ Nested & Non-Nested
NLMIXED General Normal  General Nested

BGLIMM GLM Normal X3+ Z~ Nested & Non-Nested

PROC BGLIMM fits a smaller class of models but with much ease.
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PROC BGLIMM Shares Similar Syntax to PROC
MIXED/PROC GLIMMIX

If you are somewhat familiar with PROC MIXED and PROC GLIMMIX,
transition to PROC BGLIMM is not difficult.
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PROC BGLIMM Shares Similar Syntax to PROC
MIXED/PROC GLIMMIX

If you are somewhat familiar with PROC MIXED and PROC GLIMMIX,
transition to PROC BGLIMM is not difficult.
You have the usual suspects in

e MODEL Statement: specifies the response (y), fixed effects (x),
likelihood function (dist=), and link function (link=)

o RANDOM Statement: specifies the random effects and the G-side
variance/covariance structure

e REPEATED Statement: specifies the R-side residual var/cov structure
o CLASS Statement (not supported in PROC MCMC()
o ESTIMATE Statement

37/131



Procedure Details: Syntax

PROC BGLIMM Statement '

This statement includes these commonly used options:

DATA=

DIC

NBl=
NMC=
OUTPOST=
SEED=
STATS=

names the input data set

computes the deviance information criterion

specifies the number of burn-in iterations

specifies the number of iterations, excluding the burn-ins
names the output data set to contain posterior samples
specifies the random seed for simulation

controls posterior statistics
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Procedure Details: Syntax

MODEL response = fixed-effects < / model-options>;

This statement specifies the response and fixed-effects parameters. You
can also use this statement to specify the response distribution via the
DIST= option and to specify the link function g(-) via the LINK= option.

Some other useful options follow:
@ NOINT excludes the fixed-effects intercept from the model.
o OFFSET= specifies the offset variable.
o COEFFPRIOR= specifies the prior of the fixed-effects coefficients.
o SCALEPRIOR= specifies the prior of the scale parameter.
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Simple Linear Regression with Class Variable

proc bglimm data=Sashelp.Class nmc=10000 thin=2
seed=436792 outpost=Classout;
class sex;
model Weight = Height Age Sex / cprior=normal(var=1e6);
run;

The CPRIOR= option specifies the prior distribution for the coefficient
prior (B's).
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Simple Linear Regression with Class Variable

proc bglimm data=Sashelp.Class nmc=10000 thin=2
seed=436792 outpost=Classout;
class sex;
model Weight = Height Age Sex / cprior=normal(var=1e6);
run;

The CPRIOR= option specifies the prior distribution for the coefficient
prior (B's).

There are default priors for all parameters.
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Procedure Details: Syntax

Built-In Resposne Distributions:

DIST= Distribution
Option Value Function
BINARY Binary
BINOMIAL Binary or binomial
EXPONENTIAL | EXPO Exponential
GAMMA | GAM Gamma
GEOMETRIC | GEOM Geometric

INVGAUSS | IG
NEGBINOMIAL | NEGBIN | NB
NORMAL | GAUSSIAN | GAUSS
POISSON | POI

Inverse Gaussian
Negative binomial
Normal

Poisson
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Procedure Details: Syntax

Default and Commonly Used Link Functions:

Distributions Default Other Commonly Used
Link Function Link Functions

BINARY Logit Probit, comp log-log, log-log

BINOMIAL Logit Probit, comp log-log, log-log

EXPONENTIAL Log Reciprocal

GAMMA Log Reciprocal

GEOMETRIC Log

INVGAUSS Reciprocal square

NEGBINOMIAL Log

NORMAL Identity Log

POISSON Log
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Procedure Details: Syntax

RANDOM random-effects < / options>;

Defines the Z design matrix for the random effects, 4, and the covariance
structure of the G matrix.

@ SUBJECT= option to identify the subjects for the random effects and
thus to set up the blocks of G. A set of random effects is estimated
for each subject level.

@ GROUP= option to identify groups by which to vary the covariance
parameters; each new level of the grouping effect produces a new set
of covariance parameters

e TYPE= option to define the covariance structure of G.

@ You can specify multiple RANDOM statements.
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RECCECEIN
Logistic Random-Effects Model

Example program:

proc bglimm data=MultiCenter nmc=10000 seed=976352;
class Center Group;
model SideEffect/N = Group / noint;
random int / subject = Center;

run;
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Logistic Random-Effects Model
Example program:

proc bglimm data=MultiCenter nmc=10000 seed=976352;
class Center Group;
model SideEffect/N = Group / noint;
random int / subject = Center;

run;

Recall that the mixed model setup in BGLIMM follows the standard
convention:

E[Y|B, 7] =g '(n) =g "(XB+Zv)
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RECCECEIN
Logistic Random-Effects Model

Example program:

proc bglimm data=MultiCenter nmc=10000 seed=976352;
class Center Group;
model SideEffect/N = Group / noint;
random int / subject = Center;

run;

Recall that the mixed model setup in BGLIMM follows the standard
convention:

E[YIB,7 =g '(n) =g "(XB +Z7)
The random effects are assumed normally distributed:

~i ~ N(0,G;)
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RECCECEIN
Multiple RANDOM Statements

You can add multiple random effects to the model:

proc bglimm data=a;
class Analyst Run Plate conc;
model log_assay = Analyst conc ;
random int / subject=run(analyst)
covprior=uniform(lower=0, upper=2) s;
random int / subject=plate(run*analyst)
covprior=halfnormal (var=4) s;
run;
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RECCECEIN
Multiple RANDOM Statements

You can add multiple random effects to the model:

proc bglimm data=a;
class Analyst Run Plate conc;
model log_assay = Analyst conc ;
random int / subject=run(analyst)
covprior=uniform(lower=0, upper=2) s;
random int / subject=plate(run*analyst)
covprior=halfnormal (var=4) s;
run;

The random effects can be nested or nonnested.

The COVPRIOR= option provides choices on the prior distribution of the
G-sided variance/covariance parameter.
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Procedure Details: Syntax
Types of covariance structures:

Structure Description

ANTE(1) Antedependence

AR(1) Autoregressive(1)

ARH(1) Heterogeneous AR(1)
ARMA(1,1) ARMA(1,1)

CS Compound symmetry

CSH Heterogeneous compound symmetry
FA(1) Factor analytic

HF Huynh-Feldt

TOEP Toeplitz

TOEP(q) Banded Toeplitz

TOEPH Banded heterogeneous Toeplitz
UN Unstructured

UN(q) Banded unstructured

VvC Variance components
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Procedure Details: Syntax

REPEATED repeated-effect < / options>;

Secifies the R matrix in the model.

o A repeated-effect is required to define the proper location of the
repeated responses. The levels of the repeated-effect must be different
for each observation within a subject.

e SUBJECT= option to set up the blocks of R.

e GROUP= option to identify groups by which to vary the covariance
parameters; each new level of the grouping effect produces a new set
of covariance parameters.

@ TYPE= option to define the covariance structure.
@ You can specify only one REPEATED statement.
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RESSECERI
Repeated Measures Model

The REPEATED statement models balanced/unbalanced repeated
measurements data:

proc bglimm data=Fev nmc=10000 seed=44672057
outpost=FevQOut;
class Drug Patient Hour;
model FEV = BaseVal Drug Hour;
random int / subject=Patient;

repeated Hour / subject=Patient(Drug) type=un;
run;
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RESSECERI
Repeated Measures Model

The REPEATED statement models balanced/unbalanced repeated
measurements data:

proc bglimm data=Fev nmc=10000 seed=44672057
outpost=FevQOut;
class Drug Patient Hour;
model FEV = BaseVal Drug Hour;
random int / subject=Patient;

repeated Hour / subject=Patient(Drug) type=un;
run;

Only the MVN likelihood is supported in this release.
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RESSECERI
Model Heterogeneity

The GROUP= option models different covariance types for different groups:

proc bglimm data=pr seed=475193 outpost=pr_out;

class Person Gender Time;

model Distance = Age|Gender;

repeated Time / type=un subject=Person group=Gender;
run;
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Misc Features

PROC BGLIMM models missing response variable by default.
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Misc Features

PROC BGLIMM models missing response variable by default.
@ This corresponds to Missing at Random (MAR).

You can use PROC BGLIMM for prediction via the missing data approach.
Much in the same way as PROC GLIMMIX does it.

The procedure supports a suite of prior distributions for 3, G and R
parameters, in addition to many different types of covariance structures

(TYPE=).

The procedure uses model-specific sampling algorithms (more efficient than
PROC MCMC), and they are threaded for performance.
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Power Prior: Kociba Case Study
Outline

© Applications
@ Power Prior: Kociba Case Study
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sdieedieakalCacliady
A Case Study on the Benchmark Approach in Toxicology

@ The benchmark approach is a useful tool in toxicology.
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environmental toxicant that corresponds to a prescribed change in
response compared with the background response level.

52 /131



Power Prior: Kociba Case Study
A Case Study on the Benchmark Approach in Toxicology

@ The benchmark approach is a useful tool in toxicology.

@ The benchmark dose (BMD) is defined as the dose of an
environmental toxicant that corresponds to a prescribed change in
response compared with the background response level.

@ The toxicological data comprises n binomial responses
y = (,...,yn) with y; ~ b(nj, pi), where n; is the number of
animals tested at dose level x; and p; is the probability that an animal
gives an adverse response at dose level x;,

__exp(Bo + P1xi)
1+ exp(Bo + B1xi)’

i=1,...,n.

i
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e 2R Beatn G gy
The Two Benchmark Studies in Toxicology

@ The Kociba study (Kociba et al. 1978) is a lifetime feeding study of
both female and male Sprague Dawley rats, with 50 rats tested in
each group at doses of 0, 1, 10, and 100 ng/kg/day. Inferences
derived from the Kociba study have been widely used as the basis for
risk assessments for 2,3,7,8-tetrachlorodibenzodioxin (TCDD).
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@ The Kociba study (Kociba et al. 1978) is a lifetime feeding study of
both female and male Sprague Dawley rats, with 50 rats tested in
each group at doses of 0, 1, 10, and 100 ng/kg/day. Inferences
derived from the Kociba study have been widely used as the basis for
risk assessments for 2,3,7,8-tetrachlorodibenzodioxin (TCDD).

@ The National Toxicology Program (NTP) study (National Toxicology
Program 1982) is a study in which groups of 50 male rats, 50 female
rats, and 50 male mice received TCDD as a suspension in 9:1 corn
oil-acetone by gavage twice each week to achieve doses of 0, 10, 50,
or 500 ng/kg/week for two years.
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e 2R Beatn G gy
The Two Benchmark Studies in Toxicology

@ The Kociba study (Kociba et al. 1978) is a lifetime feeding study of
both female and male Sprague Dawley rats, with 50 rats tested in
each group at doses of 0, 1, 10, and 100 ng/kg/day. Inferences
derived from the Kociba study have been widely used as the basis for
risk assessments for 2,3,7,8-tetrachlorodibenzodioxin (TCDD).

@ The National Toxicology Program (NTP) study (National Toxicology
Program 1982) is a study in which groups of 50 male rats, 50 female
rats, and 50 male mice received TCDD as a suspension in 9:1 corn
oil-acetone by gavage twice each week to achieve doses of 0, 10, 50,
or 500 ng/kg/week for two years.

@ In this analysis, we treat the Kociba study as the historical data and
the NTP study the current data.
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Benchmark Data Summary and Parameter Estimates

Study TCDD(ng/kg/day) and Response Estimates

Kociba  Control (or 0) 1 10 100 Bo (SD) 51 (SD)
9/86 3/50 18/50 34/48 -1.785 (0.210)  0.028 (0.004)

NTP _ Control (or 0) 1.4 7.1 71 Bo (SD) 1 (SD)
5/75 1/49  3/50 12/49 -3.030 (0.366)  0.026 (0.007)
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Datasets

data KOCIBA; data NTP;
input y n dose; input y n dose;
datalines; datalines;
98 O 575 0
350 1 149 1.4
18 50 10 3 50 7.1

34 48 100 12 49 71

b b

y : response
n : number of patients

dose : dosage
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e 2R Beatn G gy
Logistic Regression with Flat Prior

proc mcmc data=kociba nmc=50000 seed=70273
propcov=quanew outpost=kociba_flat;
parm bO O bl O;
prior b: ~ general(0);
p = logistic(bO + bl * dose);
model y ~ binomial(n, p);

run;

general(0) : flat prior on 5y and /51

exp(u)

logistic : p = Trexp()
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Joint Posterior Distributions from Two Separate Analysis

0.06 {o o

o NTP + KOCHIBA

o0

0.04

B

0.02

0.00
5 4 3 2 -1
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e 2R Beatn G gy
Marginal Posterior Densities of 5y and 34

Bo B
— NTP ---- KOGIBA — NTP ---- KOCIBA
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Prediction Curves from the Noninformative Analysis

0 20 40 60 80 100
DOSE

—— kociba -=--- ntp ® kociba # ntp
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Power Prior: Kociba Case Study
Power Prior using PROC MCMC

There are two ways to fit a power prior using PROC MCMC:
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sdieedieakalCacliady
Power Prior using PROC MCMC

There are two ways to fit a power prior using PROC MCMC:

@ Combined Approach
» Form a larger data set and put a weight (a) on each observation
@ Conventional Approach

» Use the historical data to construct the power prior
» Use the current data for the (binomial) likelihood function

Each has its pros and cons.
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e 2R Beatn G gy
Combined Approach

First recognize that the posterior distribution can be rewritten as:

n+ng
p(01D*,a0) o [ filyilo,x:) - mo(6)
i=1
where . — f(yil0, xi) for each i in the current data set
b f(y0,il0,x0,i))® for each i in the historical data set
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e 2R Beatn G gy
Combined Approach

First recognize that the posterior distribution can be rewritten as:

n+ng
p(01D*,a0) o [ filyilo,x:) - mo(6)
i=1
{ f(yil0, xi) for each i in the current data set

where f; = . o
’ f(0,il0,x0,i)® for each i in the historical data set

You can create a combined data set and assign separate likelihood
functions to different observations.
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Power Prior: Kociba Case Study
Combine Data Sets

You first combine both data sets:

data combined;
format group $8.;
set kociba(in=i) ntp;
if i then group = "pilot";
else group = '"current";
run;
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Power Prior: Kociba Case Study
Combine Data Sets

You first combine both data sets:

y n dose group
data combined; 2 ig g'g P}ioz
format group $8.; oo
2 A 18 50 10.0 pilot
set kociba(in=i) ntp; .
S " " = 34 48 100.0 pilot
if i then group = "pilot";
—_—n n 5 75 0.0 current
else group = '"current";
1 49 1.4 current
run;
3 50 7.1 current
12 49 71.0 current
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Power Prior: Kociba Case Study
Binomial Model: Power Prior

For each observation in the new combined data set, the likelihood function
is either:

@ a binomial (if group == ’current’) or

@ a weighted binomial (if group == ’pilot?)
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Power Prior: Kociba Case Study
Binomial Model: Power Prior

For each observation in the new combined data set, the likelihood function
is either:

@ a binomial (if group == ’current’) or
@ a weighted binomial (if group == ’pilot?)
%let a0=0.3;

proc mcmc data=combined nmc=50000 seed=70273
propcov=quanew outpost=ntp_power;
parm bO O bl O;
prior b: ~ general(0);
p = logistic(bO + bl * dose);
1llike = logpdf("binomial", y, p, n);
if group eq "pilot" then
llike = &a0 * llike;
model y ~ general(llike);
run;
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Alternatively, you can put the weight ag in the combined data set:

data combined; y n dose a0

set kociba(in=i) ntp; 9 8 0.0 0.3

if i then a0 = 0.3; 3 50 1.0 0.3
else a0 = 1; c.

5 75 0.0 1.0

1 49 1.4 1.0
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Alternatively, you can put the weight ag in the combined data set:

data combined; y n dose a0

set kociba(in=i) ntp; 9 8 0.0 0.3

if i then a0 = 0.3; 3 50 1.0 0.3
else a0 = 1; c.

5 75 0.0 1.0

1 49 1.4 1.0

proc mcmc data=combined ...;
parm b0 O bl O;
prior b: ~ general(0);
p = logistic(bO + bl * dose);
llike = a0 * logpdf("binomial", y, p, n);
model y ~ general(llike);
run;

This produces the same posterior estimates.
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sdieedieakalCacliady
Notes on Combined Approach

The combined approach in fitting power prior is intuitive and easy to
implement;

65 /131



Notes on Combined Approach

The combined approach in fitting power prior is intuitive and easy to
implement;

The setup is generic to many model specifications, as long as the
conditional independence assumption (e.g. in the likelihood function) holds.

65 /131



Notes on Combined Approach

The combined approach in fitting power prior is intuitive and easy to
implement;

The setup is generic to many model specifications, as long as the
conditional independence assumption (e.g. in the likelihood function) holds.

There are some issues with this approach:

@ DIC calculation, which should only depend on D, not Dy, cannot be
correctly calculated within the procedure. Post-simulation calculation
(use DATA step for example) can be tedious.
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sdieedieakalCacliady
Notes on Combined Approach

The combined approach in fitting power prior is intuitive and easy to
implement;

The setup is generic to many model specifications, as long as the
conditional independence assumption (e.g. in the likelihood function) holds.

There are some issues with this approach:

@ DIC calculation, which should only depend on D, not Dy, cannot be
correctly calculated within the procedure. Post-simulation calculation
(use DATA step for example) can be tedious.

@ Cannot be extended to normalized power prior due to an integral
calculation

Will discuss these issues in later slides.
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Conventional Approach in Fitting Power Prior

This approach specifies the power prior in its original form
(0| Do, ap) o< L(0]|Dg)?°m(8), which depends on the pilot (KOCIBA) data
set.
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Conventional Approach in Fitting Power Prior

This approach specifies the power prior in its original form
(0| Do, ap) o< L(0]|Dg)?°m(8), which depends on the pilot (KOCIBA) data
set.

@ Use read_array function to store the KOCIBA data set in an array
@ Use DO-1loop to compute the power prior

@ Use the general function to specify the non-standard prior
distribution
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%let a0=0.3;

proc mcmc data=ntp ...; ! use the current data set
array pdatal[1l] / nosymbols; ! array to store the pilot data set
begincnst;
rc = read_array("kociba", pdata); ! save kociba data in pdata
nobs = dim(pdata, 1);
endcnst;
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%let a0=0.3;

proc mcmc data=ntp ...; ! use the current data set
array pdatal[1l] / nosymbols; ! array to store the pilot data set
begincnst;
rc = read_array("kociba", pdata); ! save kociba data in pdata
nobs = dim(pdata, 1);
endcnst;

parm b0 O bl 0;

beginprior;

1p = 0;

do j = 1 to nobs; ! loop through the pilot data
p = logistic(b0 + bl * pdatalj,3]);
1lp = lp+logpdf ("binomial", pdatalj,1],p,pdatalj,21); ! log(L(6; Do))
end;

1p = &a0 * lp; ! ag - log(L(#; Do))

prior b0 bl ~ general(lp);

endprior;
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%let a0=0.3;

proc mcmc data=ntp ...; ! use the current data set
array pdatal[1l] / nosymbols; ! array to store the pilot data set
begincnst;
rc = read_array("kociba", pdata); ! save kociba data in pdata
nobs = dim(pdata, 1);
endcnst;

parm b0 O bl 0;

beginprior;

1p = 0;

do j = 1 to nobs; ! loop through the pilot data

p = logistic(b0 + bl * pdatalj,3]);
1lp = lp+logpdf ("binomial", pdatalj,1],p,pdatalj,21); ! log(L(6; Do))
end;

1p = &a0 * lp; ! ag - log(L(#; Do))

prior b0 bl ~ general(lp);

endprior;

p = logistic(b0 + bl * dose);
model y ~ binomial(n, p);
run;
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Notes on Conventional Approach

This approach is requires more coding:

@ The objective function needs to be coded at two places:
» once in the MODEL statement (NTP), the looping of observations is
implicit
» once in the prior construction (KOCIBA), the looping of observations is
explicit
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Notes on Conventional Approach

This approach is requires more coding:

@ The objective function needs to be coded at two places:

» once in the MODEL statement (NTP), the looping of observations is
implicit

» once in the prior construction (KOCIBA), the looping of observations is
explicit

@ More susceptible to coding errors

But this approach makes extensions easier.

Use either approaches, depending on what you want to do.
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Power Prior with ag = 0.3

0-08 o T o NTP + KOCIBA = Power(a0=0.3)
5o
0.04
@
0.02
0.00
5 4 3 2 -1
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Marginal Posterior Comparisons

—— NTP ---- KOCIBA - Power(a0=0.3)

0.06
B
— NTP ---- KOCIBA

» Compare to page 82

Qe
70/131



Fitted Curve Comparisons

20

40

80 100
DOSE
—— KOCIBA ---

NTP —-— a0=0.1 ® KOCIBA ¢ NTP

Qe
71/131



Fitted Curve Comparisons
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Fitted Curve Comparisons

DOSE DOSE
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r: Kociba Case Study

0 20 40 60 80 100 0 20 40 60 80 100
DOSE DOSE
- NTP —-— a0 =0.1 ® KOCIBA ¢ NTP

- NTP —-— a0 =0.3 ® KOCIBA ¢ NTP

DOSE DOSE
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An Immediate Question

How to choose an "optimal" value of ag?
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An Immediate Question

How to choose an "optimal" value of ag?

@ Model comparison:

» Deviance Information Criterion (DIC)

» Penalized Likelihood-type Criterion (PLC)

» Marginal Likelihood Criterion (MLC)

» Logarithm of the Pseudo-Marginal Likelihood Criterion (LPML)

@ Treat ag as a parameter and let the data inform:

» Normalized power prior

Here we cover DIC and normalized power prior.
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Deviance Information Criterion

e DIC (Spiegelhalter et al., 2002, JRSSB, 64:583) is a Bayesian
alternative to AIC and BIC, a model assessment and selection tool.

@ The criterion can be applied to non-nested models and models that
have non-iid data.
@ A smaller DIC indicates a better fit to the data.
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Deviance Information Criterion (DIC)

DIC = D(0) + pp = D(0) + 2pp
where
e D(6) =2 (log(f(y)) — log(p(y|®))) is the deviance
where

> p(y|@) is the likelihood function
» f(y) is a constant term that is not calculated

e D(0) is posterior mean of the deviance, approximated by
15 % 1 D(8"). The expected deviation measures how well the model
fits the data.

o D(8) is the deviance evaluated at 8, equal to —2log(p(y|f)). It is the
deviance evaluated at your “best” posterior estimate.

@ pp is the effective number of parameters.
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e 2R Beatn G gy
DIC Computation

PROC MCMC supports a DIC option, which computes the DIC value:

proc mcmc data=NTP ... DIC;
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e 2R Beatn G gy
DIC Computation

PROC MCMC supports a DIC option, which computes the DIC value:
proc mcmc data=NTP ... DIC;
For ag = 0.3:

Deviance Information Criterion

Dbar (posterior mean of deviance) 17.950
Dmean (deviance evaluated at posterior mean) 16.622
pD (effective number of parameters) 1.329

DIC (smaller is better) 19.279
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sdieedieakalCacliady
Compare DIC Values with Different ag

You run parallel analysis over a grid of ag values, choose an ag that
produces the lowest DIC value.
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Compare DIC Values with Different ag

You run parallel analysis over a grid of ag values, choose an ag that
produces the lowest DIC value.

Good time for BY group processing.

data NTP_by;
set NTP;
do a0 = 0.05, 0.15, O to 1 by 0.1;
output;
end;
run;

proc sort data=ntp_by;

by a0;

run;
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Compare DIC Values with Different ag

You run parallel analysis over a grid of ag values, choose an ag that

produces the lowest DIC value.

Good time for BY group processing.

data NTP_by;
set NTP;

do a0 = 0.05, 0.15, O to 1 by 0.1;

output;
end;
run;

proc sort data=ntp_by;
by a0;
run;
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Power Prior: Kociba Case Study
DIC Computation using PROC MCMC

ods output dic=ntp_dic; ! save DIC results to a data set
proc mcmc data=ntp_by ... dic;
by a0; ! 13 simulations are performed
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Power Prior: Kociba Case Study
DIC Computation using PROC MCMC

ods output dic=ntp_dic; ! save DIC results to a data set
proc mcmc data=ntp_by ... dic;
by a0; ! 13 simulations are performed

array pdatal[l] / nosymbols;
begincnst;

rc = read_array("kociba", pdata); ! must read in KOCIBA
nobs = dim(pdata, 1); ! data set separately
endcnst;
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Power Prior: Kociba Case Study
DIC Computation using PROC MCMC

ods output dic=ntp_dic; ! save DIC results to a data set
proc mcmc data=ntp_by ... dic;
by a0; ! 13 simulations are performed

array pdatal[l] / nosymbols;
begincnst;

rc = read_array("kociba", pdata); ! must read in KOCIBA

nobs = dim(pdata, 1); ! data set separately
endcnst;

1lp = a0 * 1lp; ! for each BY group, a different apy value is used.

prior b0 bl ~ general(lp);
p = logistic(bO + bl * dose);

model y ~ binomial(n, p);
run;

77 /131



DIC Values vs ag
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DIC Values vs ag
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This suggests a small value of ap (0.05 or 0.1) is preferred.
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sdieedieakalCacliady
Variability in DIC

There are two sources of variability in DIC computation:

e distributional variability (data)

e sampling variability (monte carlo)
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e distributional variability (data)

e sampling variability (monte carlo)

The data variability is difficult to get a handle on - requires repeats of the
data, perhaps using bootstrap. But not always realistic.

The sampling variability can be accessed by repeating the simulation many
times (another BY variable) and compare the distributions of the DIC.

by a0 rep;
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Variability in DIC

There are two sources of variability in DIC computation:

e distributional variability (data)

e sampling variability (monte carlo)

The data variability is difficult to get a handle on - requires repeats of the
data, perhaps using bootstrap. But not always realistic.

The sampling variability can be accessed by repeating the simulation many
times (another BY variable) and compare the distributions of the DIC.

by a0 rep;

This takes sometime to run, about five minutes (100 repeats per ag,
NMC=50,000).
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Monte Carlo Variability
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Power Prior with ag = 0.1
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Marginal Posterior Comparisons
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Prior on ag

Placing a hyper prior, 7(ap), on the weight parameter is not as
straightforward as it seems.
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L(B; Dy)? - mo(3), and m(ap) does not lead to the right joint prior:
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The normalizing constant C(ag) requires integration.
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Prior on ag

Placing a hyper prior, 7(ap), on the weight parameter is not as
straightforward as it seems. Multiplying the unnormalized power prior,
L(B; Dy)? - mo(3), and m(ap) does not lead to the right joint prior:

p(B;a0|Do) o< p(B|Do, a0) - T(a0)
L(B; Do)™ - mo(B)

= T Doy mo(B)ds ™)
- C(lao) - L(8; Do)* - mo(B) - mo(a0)

% L(B; Do)® - mo(B) - mo(a0)

The normalizing constant C(ag) requires integration.

For more information on the normalized Power Prior, see Neuenschwander,
Branson, and Spiegelhalter (2009, Statisti. Med. 28:3562)
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Numerical Integral Function

To compute the normalizing constant, you need an integral function
(DATA step is doable, but it is complicated).
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(DATA step is doable, but it is complicated).

PROC MCMC supports a native CALL QUAD subroutine that computes the
integral of a user-specific function.

CALL QUAD("ObjFun", Res, LLimit, ULimit <, args>);
ObjFun : name of an integrand function (defined using PROC FCMP)
Res : result

Limit : lower and upper limits (of the w.r.t. parameters)

arg : arguments to the ObjFun (e.g. data set variables, parameters)

84 /131



Numerical Integral Function

To compute the normalizing constant, you need an integral function
(DATA step is doable, but it is complicated).

PROC MCMC supports a native CALL QUAD subroutine that computes the
integral of a user-specific function.

CALL QUAD("ObjFun", Res, LLimit, ULimit <, args>);

ObjFun : name of an integrand function (defined using PROC FCMP)
Res : result
Limit : lower and upper limits (of the w.r.t. parameters)

arg : arguments to the ObjFun (e.g. data set variables, parameters)

The first four arguments are location specific. The w.r.t. parameter(s) is
specified in the definition of the ObjFun function.
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sdieedieakalCacliady
Define Objective Function

The objective function (e.g. L(3; Do)® - mo(3)) is defined using PROC
FCMP:
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Define Objective Function

The objective function (e.g. L(3; Do)® - mo(3)) is defined using PROC

FCMP:

PROC FCMP outlib=sasuser.funcs.power;
SUBROUTINE ObjFun(parm, obj, vars);
OUTARGS obj;

obj = f(parm, vars ...);
endsub;
run;
outlib : location to store the objective function
parm : w.r.t. parameters (e.g. 3)
obj : integrand (e.g. C(ap), must be declared as an OUTARGS
vars : variables needed to construct the integrand
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Integration over Dy

Integral of sums is not the sum of integrals!
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The integral must be computed using the entire historical data set (Dp).
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You cannot use the combined dataset approach to compute integral by
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Integration over D

Integral of sums is not the sum of integrals!
The integral must be computed using the entire historical data set (Dp).

You cannot use the combined dataset approach to compute integral by
observation.

The object function must be written using the pdata array.

86 /131



Power Prior: Kociba Case Study
Specifying [L(5o, B1|Do)]?* in PROC FCMP

proc fcmp outlib=sasuser.funcs.power;
subroutine bPower(beta[*], den, pdatal*,*], a0); !integration w.r.t. [
outargs den;
nobs = dim(pdata, 1);

1p = 0;

do j = 1 to nobs;
p = logistic(betal[l] + betal[2] * pdatalj,31);
1p = 1p + logpdf ("binomial", pdatalj,1], p, pdatalj,2]1);
end;

den = exp(ald * 1p); ! [L(Bo, B1|Do)]™

endsub;

run;

The OUTLIB= option specifies the library that stores the objective
function.
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Power Prior: Kociba Case Study
Fitting Normalized Power Prior in PROC MCMC

options cmplib=sasuser.funcs;
proc mcmc data=ntp ...

array beta[2] b0 bi;

array lower[2] -100 -100; ! integration lower bound
array upper[2] 100 100; ! integration upper bound
prior a0 ~ uniform(0, 1); ! ap is a parameter
beginprior;

1p = 0;

do j = 1 to nobs;
p = logistic(betal[l] + beta[2] * pdatal[j,3]);
1p = 1p + logpdf ("binomial", pdatalj,1], p, pdatalj,2]1);
end;
CALL QUAD('bPower', C, lower, upper, pdata, a0); ! C = C(ao)
1p = -log(C) + a0 * 1p;
endprior;
prior b0 bl ~ general(lp);

run;
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Normalized Power Prior is Similar to ag = 0.1

Bo

80 /131



Selection of ag

@ On one hand, the normalized power prior provides an automated
approach in selecting ag.
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Selection of ag

@ On one hand, the normalized power prior provides an automated
approach in selecting ag.
@ But it is quite computationally intensive
» Numerical integral can be costly to compute, and the problem gets
worse as the dimension of the model gets to be larger.
» In addition, normalized power prior requires coding the likelihood

function at three places: MODEL statement, PRIOR statement, and in
the (integral) objective function.

» This is prone to coding errors, and can be difficult in maintaining
production code
o Alternatively, grid-based search over DIC can be effective. Although

the plug-in method does not account for the uncertainty in ag, often
the difference is relatively minor.
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Evaluation of a Basket Clinical Trial Design
Outline

© Applications

@ Evaluation of a Basket Clinical Trial Design
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Evaluation of a Basket Clinical Trial Design
Evaluation of a Basket Clinical Trial Design

The goal is to evaluate the drug response and select cohorts for further
study.

@ A basket adaptive design enrolls patients across cohorts

o Evaluate the performance at an interim analysis for each cohort to
either continue enroll, or stop for efficacy or futility

In this example, there are 10 cohorts with 80 patients, and different cohorts
have different enrollment rates. The endpoint is clinical response rate:

Hy:0=10% vs H;:0=35%

Thanks to Frank Liu (Merck) for his help with this example.
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Applications Evaluation of a Basket Clinical Trial Design

Hierarchical Models

A logistic random-effects model is used to fit all the cohorts patients. For
j=1,---,10:

yj ~ binomial(nj,6;)
exp(u))

(1 + exp(u))
pj ~ normal(p, )

p# ~ normal(0, prec = 0.001)
T ~ gamma(0.01,iscale = 0.01)

The decision criteria are
@ stop for futility if P(6; > 0.225) < 0.05
@ stop for efficacy if P(6; > 0.225) > 0.85
© otherwise, continue enrollment (in adaptive design)
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Applications Evaluation of a Basket Clinical Trial Design

Simulation Details

Draw number of cohort patients from a multinomial distribution with
ntotal = 80, with analysis carried out in cohorts that have n; > 5:

(1, ma, -+ mo) ~ Multi(py, p2, -+, p1o), Y _pi=1
i

where the allocation probabilities are set to be
pr=--=ps=014, p;=---=pio=0.04

and consider three scenarios of true response rates:

@ 0; = 0.35 for all cohorts (strong alternative)
@ 0; = 0.1 for all cohorts (strong null)
991:---:94:0.35; 95:---:010:0.1
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Evaluation of a Basket Clinical Trial Design
Simulate Cohort Patients Data

data Alloc;
array p[10] (0.14 0.14 0.14 0.14 0.14 0.14 0.04 0.04 0.04 0.04); ! Multinomial probability vector
array theta[3, 10] (0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35, ! three true response rates
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10,
0.35 0.35 0.35 0.35 0.10 0.10 0.10 0.10 0.10 0.10);
array n[10]; array y[10];
call streaminit(12467);
do RespRate = 1 to 3; ! Do-loop over three scenarios
do Rep = 1 to 5000; 4 5000 Repeats
do i =1 to 10; n[i] = 0; end;
do i = 1 to 80; ! Draw Multinomial Samples, ntotal=80
j = rand("table", of p[*]); ! The table RNG draws an index
n[jl+1; ! Increase count of according to that index
end;
do i =1 to 10;
ylil = .
if (n[il > 5) then ! Only draw y if the number of patients is greater than 5
y[il = rand("binomial", theta[RespRate, il, n[il); ! Draw Responses according to 6
end;
output;
end;
end;
drop p: w theta: i j;
run;

The RespRate and Rep variables become the BY variables.
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Evaluation of a Basket Clinical Trial Design
Simulated Data Set

13 17 15 12
11 13 9 17

4 15 11 11
7 8 5 18

11 11 7 12
14 16 13 8

18 14
10 6

[y

N

w =

w

N

S

w

o<
~ <
o <
© <

QNS

o <

96 /131



Evaluation of a Basket Clinical Trial Design
Simulated Data Set

13 17 15 12
11 13 9 17

4 15 11 11
7 8 5 18

11 11 7 12
14 16 13 8

19 6
12 11

18 14
10 6

[y

N

w =

w

N

S

w

o<
~N <
0 <
© <

QNS

Note that y = 0 is different from y=missing (.).

o <

96 /131



Evaluation of a Basket Clinical Trial Design
Simulated Data Set
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Note that y = 0 is different from y=missing (.). Simulation should include
observations with y = 0 (groups with enough enrollment) but not y = .

(groups don't have enough enrollment, hence not part of the trial).
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Input Data Set to PROC MCMC

DA
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Evaluation of a Basket Clinical Trial Design
Fitting Hierarchical Model in PROC MCMC

Each simulated data set is fitted using a binomial random-effects model:

proc mcmc data=alloc ... missing=cc;
by RespRate Rep;
parm mu tau;
prior mu ~ normal(0O, prec=0.001);
prior tau ~ gamma(shape=0.01, iscale=0.01);
random u ~ normal (mu, prec=tau) subject=k;
model y ~ binomial(n, logistic(u));
run;
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Each simulated data set is fitted using a binomial random-effects model:
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prior tau ~ gamma(shape=0.01, iscale=0.01);
random u ~ normal (mu, prec=tau) subject=k;
model y ~ binomial(n, logistic(u));
run;

@ The missing=cc option discard observations with missing response
(y's). Fitting models of different sizes in each BY group.
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Evaluation of a Basket Clinical Trial Design
Fitting Hierarchical Model in PROC MCMC

Each simulated data set is fitted using a binomial random-effects model:

proc mcmc data=alloc ... missing=cc;
by RespRate Rep;
parm mu tau;
prior mu ~ normal(0O, prec=0.001);
prior tau ~ gamma(shape=0.01, iscale=0.01);
random u ~ normal (mu, prec=tau) subject=k;
model y ~ binomial(n, logistic(u));
run;

@ The missing=cc option discard observations with missing response
(y's). Fitting models of different sizes in each BY group.

@ There are a total of 3 x 5000 of BY groups.
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Evaluation of a Basket Clinical Trial Design
Fitting Hierarchical Model in PROC MCMC

Each simulated data set is fitted using a binomial random-effects model:

proc mcmc data=alloc ... missing=cc;
by RespRate Rep;
parm mu tau;
prior mu ~ normal(0O, prec=0.001);
prior tau ~ gamma(shape=0.01, iscale=0.01);
random u ~ normal (mu, prec=tau) subject=k;
model y ~ binomial(n, logistic(u));
run;

@ The missing=cc option discard observations with missing response
(y's). Fitting models of different sizes in each BY group.

@ There are a total of 3 x 5000 of BY groups.

@ Each BY group can have potentially different number of parameters
(in random effects).
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Evaluation of a Basket Clinical Trial Design
Fit the Same Model using PROC BGLIMM

proc bglimm data=alloc outpost=out seed=720517 nmc=20000
stats=none diag=none plots=none missing=cc;
by RespRate rep;
class k;
model y/n = / dist=binomial link=logit;
random int / subject=k covprior=igamma(shape=0.01 scale=0.01);
run;
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proc bglimm data=alloc outpost=out seed=720517 nmc=20000
stats=none diag=none plots=none missing=cc;
by RespRate rep;
class k;
model y/n = / dist=binomial link=logit;
random int / subject=k covprior=igamma(shape=0.01 scale=0.01);
run;

@ The model is the same: a binomial random-effects logistic regression
@ The k-level random intercepts enter the regressor linearly

@ The COVPRIOR= option specifies the prior for the shrinage parameter
(of the random effects)
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Evaluation of a Basket Clinical Trial Design
Fit the Same Model using PROC BGLIMM

proc bglimm data=alloc outpost=out seed=720517 nmc=20000
stats=none diag=none plots=none missing=cc;
by RespRate rep;
class k;
model y/n = / dist=binomial link=logit;
random int / subject=k covprior=igamma(shape=0.01 scale=0.01);
run;

The model is the same: a binomial random-effects logistic regression

The k-level random intercepts enter the regressor linearly

The COVPRIOR= option specifies the prior for the shrinage parameter
(of the random effects)

The generate 300 million posterior samples. The rest is counting.
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Evaluation of a Basket Clinical Trial Design
The Rest is Counting

For each posterior sample of uj, you compute if logistic(u) > 0.
(result in 0 or 1):
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Applications Evaluation of a Basket Clinical Trial Design

You Monte carlo over the 20,000 zero-one indicator variables (per repeat)
to estimate the probabilities:

Resp
Rate rep pT1 pT2 pT3 pT4 pT6 pT6 pI7 pI8 pT9 pTil

0.9

=R s e e
a P W N
o
O
(6]

o
©
©
o
©
©
(@]
©
[

o
©
\]

o
©
©

0.67 . 0.55 0.58 0.56 0.59 2 . 0.66
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Applications Evaluation of a Basket Clinical Trial Design

Check for Futility and Efficacy

Now we compare the posterior probabilities with the decision criteria (0.05

for futility and 0.85 for efficacy), and get another bunch of zero-one
indicator variables.
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Evaluation of a Basket Clinical Trial Design
Check for Futility and Efficacy

Now we compare the posterior probabilities with the decision criteria (0.05
for futility and 0.85 for efficacy), and get another bunch of zero-one
indicator variables.

Again, average over these indicator variables (5000 repeats) get us the
estimates of the probabilities of trial reach one of the three decisions:

e Early stop for futility
o Early stop for Efficacy

@ Trial is inconclusive
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Applications Evaluation of a Basket Clinical Trial Design

Probability Early Stopping for Futility

grp

w N =

Probability of Early Stopping for Efficacy

grp

w N =

Probability of Trial is Inconclusive:

grp

W N =

cohl

.0002
.6637
.0072

cohl

.7002
.0002
.3336

cohl

.2974
.3373
.6625

coh?2
.0000
.6790
.0066

coh?2
.6895
.0004
.3258

coh?2
.3105
.3196
.6709

coh3

.0004
.6819
.0059

coh3

.6916
.0008
. 3286

coh3

.3076
.3156
.6652

coh4d
.0002
.6764
.0054

coh4d
.6918
.0004
.3275

coh4
.3080
.3240
.6651

cohb

.0000
.6737
.0859

cohb

.6912
.0002
.0258

cohb

.3092
.3244
.8859

coh6

.0004
.6669
.0862

coh6

.6856
.0002
.0247

coh6

.3132
.3321
.8922

coh7

.0000
.5934
.0432

coh7

.7033
.0000
.0247

coh7

.2986
.3860
.9300

coh8

.0000
.6315
.0479

coh8

.6764
.0000
.0077

coh8

.3198
.3566
.9387

coh9

.0000
.6553
.0451

coh9

.6679
.0000
.0132

coh9

.3283
.3527
.9380

cohl10
.0000
.6163
.0421

cohl10
.6190
.0020
.0165

cohl0
.3810
.3796
.9304
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Applications Evaluation of a Basket Clinical Trial Design

Adaptive Randomization

@ Algorithm for AR Design
» Step 1. Early Loser: If the probability that treatment arm k is the
best falls below some prespecified probability p, i.e., if

P(Gk > 9j¢k|Data) < pL,

then arm k is declared a loser and suspended. Normally, we take
pr < 0.10.

» Step 2. Early Winner: If the probability that treatment arm k is the
best exceeds some prespecified probability py, i.e., if

P(@k > 9j7,gk|Data) > pu,

then arm k is declared the winner and the trial is stopped early. We
typically take py fairly large. In a two-arm trial we would take

pu=1-p.
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Applications Evaluation of a Basket Clinical Trial Design

Adaptive Randomization

o Step 3. Final winner: If, after all patients have been evaluated, the
probability that treatment arm k is best exceeds some prespecified
probability, pj;, i.e., if

P(8x > 6j+«|Data) > pjj,

then arm k is declared the winner. If no treatment arm can meet this
criterion, the AR program does not make a final selection. One
typically sets pj; < py (say, between 0.70 and 0.90) to increase the
chance of obtaining a final winner.
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Applications Evaluation of a Basket Clinical Trial Design

Adaptive Randomization

o Step 4. Futility: If the probability that treatment arm k is better
than some prespecified minimally tolerable response rate, 0,,i,, falls
below some prespecified probability pj, i.e., if

P(0x > Omin|Data) < pj,

then arm k is declared futile and will not accrue more patients. This
rule applies only in efficacy trials. We take p; < 0.10, Once an arm is
declared futile, it cannot be re-activated.
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Applications Evaluation of a Basket Clinical Trial Design

Adaptive Randomization

@ As each new patient enters the trial, the randomization probability is
updated. Assuming a trial with m arms, the probability of arm k being
assigned next is

P(6x = max;f;|Data)°
oM. P(6; = max;0j|Data)’

where ¢ > 0.

@ ¢ = 0 corresponds to equal randomization. Typically, ¢ is chosen to be
some significant fraction of the sample size, such as ¢ = n/2N, where
N is the maximum number of patients and n is the number of
currently enrolled patients.

@ In general, values of ¢ near 1 and no bigger than 2 are recommended.
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Applications Evaluation of a Basket Clinical Trial Design

Adaptive Randomization

@ As each new patient enters the trial, the randomization probability is
updated. Assuming a trial with m arms, the probability of arm k being
assigned next is

P(6x = max;f;|Data)°
oM. P(6; = max;0j|Data)’

where ¢ > 0.

@ ¢ = 0 corresponds to equal randomization. Typically, ¢ is chosen to be
some significant fraction of the sample size, such as ¢ = n/2N, where
N is the maximum number of patients and n is the number of
currently enrolled patients.

@ In general, values of ¢ near 1 and no bigger than 2 are recommended.

This can't be done using BY group and one must write a macro do-loop to
carry out the simulation.
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Internal Release Limits
Outline

© Applications

@ Internal Release Limits
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Applications Internal Release Limits

Internal Release Limits

o drug Stablhty the upper specification limit (USL)
. upper IRL
capacity of a drug to
remain within limits
lower IRL

CQA

(shelf-life)

@ Internal Release Limits: \

a window which
guarantees with a defined lower specification "m"(L:SL’
level of confidence that a
batch remains within
specifications throughout
its shelf-life

|
[
[
before expiry date :
[
[
[
[

stability time Shelf-life

Thanks to Laurent Natalis (Pharmalex) for the data and help with this example.
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Internal Release Limits
You Want to Get

105.0 105.0
\
1025 - 1025 - \
- : |
g e, »
g 1000 —c_\_%‘x\\ 2 100.0 - \

97.5 - |

95.0 = : : 95.0
0 10 20 30 40 00 04 08
Time PoS

where the blue bars are the lower and upper IRLs.
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Internal Release Limits
What are Internal Release Limits

From a modeling perspective, we want to find an interval,
(IRLjower, IRLypper), such that, when the initial measurement (at time 0,
yt—0) falls within this interval, then
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What are Internal Release Limits
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Internal Release Limits
What are Internal Release Limits

From a modeling perspective, we want to find an interval,
(IRLjower, IRLypper), such that, when the initial measurement (at time 0,
yt—0) falls within this interval, then

Pr({ye—1, -, ye—st} € (LL, UL)) > 95%

If we consider a monotone linear model (with negative slope), it is
sufficient to find the interval based on the last measurement point:

Pr(ye—s € (LL, UL)) > 95%

Because we don’t know what the true value is at t = 0 (measurement
errors), we find the interval based on both end points:

Pr({yt=0, yt=s1} € (LL, UL)) > 95%
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Internal Release Limits
Steps in Estimating IRLs

@ Fit a model to the data (random intercept/random slope model in this
case)
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Steps in Estimating IRLs

© Fit a model to the data (random intercept/random slope model in this
case)

@ Compute predictive distributions at different time points (blue band)
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iGN
Steps in Estimating IRLs

© Fit a model to the data (random intercept/random slope model in this
case)

@ Compute predictive distributions at different time points (blue band)
© Probability of Success (PoS) curve
» Estimate the joint (predictive) distribution of y;—o and y;—s;
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iGN
Steps in Estimating IRLs

© Fit a model to the data (random intercept/random slope model in this
case)

@ Compute predictive distributions at different time points (blue band)

© Probability of Success (PoS) curve

» Estimate the joint (predictive) distribution of y;—o and y;—s;
» Compute the Probability of Success (PoS) of y;—s; € [LL, UL], given
different values of y;—g, estimate a curve
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iGN
Steps in Estimating IRLs

© Fit a model to the data (random intercept/random slope model in this
case)

@ Compute predictive distributions at different time points (blue band)

© Probability of Success (PoS) curve

» Estimate the joint (predictive) distribution of y;—o and y;—s;
» Compute the Probability of Success (PoS) of y;—s; € [LL, UL], given
different values of y;—g, estimate a curve

Q Estimate (/RLjower, IRLupper)
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Applications Internal Release Limits

Part of the Data Set

Batch

va2_1
va_1
V2_2

There are 11 batches and 50 observations (unbalanced).

TIME

12
24

6
12
18

D O O W

LEVEL

99.
98.
100.
97.
98.
98.
98.
97.
99.

411
464
210
785
142
442
850
625
656
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Step 1: Random-Effects Model

Random intercept and random slope model:

Yij

Hij

Y0,

Tt

2 2 2

Uy ’ 070 ) O'%

505 61’

where i and j represent the i-th

~ N(pj,03)

= 90, + 7t - TIME;
~ N(ﬁ070"2yo)

~ N(Bfﬂ J'2yt)

~ half-Cauchy

~ N(0,10°)

measurement in the j-th batch.
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iGN
Fitting Random-Effects Model using PROC MCMC

proc mcmc data=irl nmc=10000 nbi=1000 seed=107561
outpost=irlOut alg=nuts;

parm b0 bT;
parms s2g0 s2gT s2y / slice;
prior b: ~ n(0, sd=1le6);
prior s2: ~ cauchy(0, 1, lower=0);
random g0 ~ n(0, var=s2g0) subject=batch;
random gT ~ n(0, var=s2gT) subject=batch;
mu = b0 + bt * time + g0 + gT * time;
model level ~ normal (mu, var=s2y);
run;
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iGN
Fitting Random-Effects Model using PROC MCMC

proc mcmc data=irl nmc=10000 nbi=1000 seed=107561
outpost=irlOut alg=nuts;

parm b0 bT;
parms s2g0 s2gT s2y / slice;
prior b: ~ n(0, sd=1e6);
prior s2: ~ cauchy(0, 1, lower=0);
random g0 ~ n(0, var=s2g0) subject=batch;
random gT ~ n(0, var=s2gT) subject=batch;
mu = b0 + bt * time + g0 + gT * time;
model level ~ normal (mu, var=s2y);
run;

The posterior mean estimate of 3; is negative, an overall declining slope.
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3] e il
Step 2: Posterior Prediction

The posterior predictive distribution is the distribution of unobserved
observations (prediction), conditional on the observed data.
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Step 2: Posterior Prediction

The posterior predictive distribution is the distribution of unobserved
observations (prediction), conditional on the observed data.

T(YpredY) = / ™(Ypred: 01y)d0
— [ " preal.3)mEly)d0

— [ "preal)(6ly)do

where 8 = {3,~}, fixed and random effects.

117 /131



3] e il
Step 2: Posterior Prediction

The posterior predictive distribution is the distribution of unobserved
observations (prediction), conditional on the observed data.

T(YpredY) = / ™(Ypred: 01y)d0
— [ " preal.3)mEly)d0

— [ "preal)(6ly)do

where 8 = {3,~}, fixed and random effects.

This distribution does not depend on parameters - all uncertainties are
integrated out, including those from the random effects.
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3] e il
Step 2: Posterior Prediction

We want to make predictions on a hypothetical new batch over different
time points.
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Applications Internal Release Limits

Step 2: Posterior Prediction

We want to make predictions on a hypothetical new batch over different
time points.

For every time point (TIME=36, for example), you use the posterior
samples (OUTPOST= data set, k = 1,---,10000) to draw the random
effects and the predicted values:

@ draw gk ~ N(ﬁO,hU%o,k)
Q draw ¢k ~ N(ﬁnk’a?yr,k)

118 /131



3] e il
Step 2: Posterior Prediction

We want to make predictions on a hypothetical new batch over different
time points.

For every time point (TIME=36, for example), you use the posterior
samples (OUTPOST= data set, k = 1,---,10000) to draw the random
effects and the predicted values:

@ draw gk ~ N(ﬁO,hU%o,k)
Q draw ¢k ~ N(ﬁnk’a?yr,k)

© compute over all mean: p =k + Ve - TIME
© draw yic ~ N(1.02,)
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3] e il
Step 2: Posterior Prediction

We want to make predictions on a hypothetical new batch over different
time points.

For every time point (TIME=36, for example), you use the posterior
samples (OUTPOST= data set, k = 1,---,10000) to draw the random
effects and the predicted values:

@ draw gk ~ N(ﬁO,kvaio,k)
Q draw ¢k ~ N(ﬁnk’a?yr,k)

© compute over all mean: p =k + Ve - TIME
© draw yic ~ N(1.02,)

Repeat the process for all time points.
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SAS Code Drawing from Posterior Predictive Distribution

/* set up a fine grid */
data pred;
do time = 0 to 36 by 0.1;
output;
end;
run;

/* count the length */
data _null_;
set pred nobs=nobs;
call symputx('n', nobs);
stop;
run;
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SAS Code Drawing from Posterior Predictive Distribution

data irlPred;

* i id *
/2 O30 T BN i) el 2 set irlQut; /* posterior samples */

data pred;
- _ . array newY[&n];
do tl’:e ;_O o 36 by 0.1 211 streaminit(112071);
oud?u ’ do j = 1 to &n;
?n ’ set pred point=j; /* pred data set */
HIRED g0 = rand("normal", b0, sqrt(s2g0));
gT = rand("normal", bt, sqrt(s2gT));
/* count the length +/ muY = g0 + gT * time;

data _null_;

ewY[j] = rand("normal", Y, sqrt(s2
set pred nobs=nobs; newY[j] s mu GER e

call symputx('n', nobs); end;

top: yrp ’ g output;

stops keep newY:;
run;

run;
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SAS Code Drawing from Posterior Predictive Distribution

data irlPred;

* i id *
i B G &) 5D il o set irlQut; /* posterior samples */

data pred;
- _ . array newY[&n];
do tl’:e ;_O o 36 by 0.1 211 streaminit(112071);
oud?u ’ do j = 1 to &n;
?n ’ set pred point=j; /* pred data set */
HIRED g0 = rand("normal", b0, sqrt(s2g0));
gT = rand("normal", bt, sqrt(s2gT));
/* count the length +/ muY = g0 + gT * time;

data _null_;

ewY[j] = rand("normal", Y, sqrt(s2
set pred nobs=nobs; newY[]] * (e mu e

call symputx('n', nobs); e

ton: yep ’ ? output;

Stop; keep newY:;
run;

run;

You can use the PREDDIST statement in PROC MCMC to do posterior
prediction.

119/131



Prediction Band
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Level
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Applications Internal Release Limits

Some Observations

@ The prediction band is highly sensitive to the prior choice on shrinkage
parameter (02,).
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@ The prediction band is highly sensitive to the prior choice on shrinkage
parameter (02,).
» Possibly an indication that there is not enough information in this data

set to estimate that variance.
» There are three levels of variability here: 05, O’,Y , and a . Can be just

one too many.

@ You can also consider using a truncated prior on [3;:
Be ~ N(0,10°) - Ii5,0)

which ensures a negative slope.
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Internal Release Limits
Some Observations

@ The prediction band is highly sensitive to the prior choice on shrinkage
parameter (02,).
» Possibly an indication that there is not enough information in this data

set to estimate that variance.
» There are three levels of variability here: 05, 07 , and a . Can be just

one too many.

@ You can also consider using a truncated prior on [3;:
Be ~ N(0,10°) - Ii5,0)

which ensures a negative slope.
Specification using PROC MCMC:
prior bT ~ n(0, sd=1e6, upper=0);
Not much impact on the posterior distribution in this example.
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Step 3: Estimate PoS Curve

Next we want to estimate Probability of Success (PoS):

1.00
0.75
0.50 -

0.25

PoS that Y(0) and Y(SL) are in [LL, UL]

0.00

T T T
95.0 97.5 100.0 1025 105.0
Level at Time =0
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Applications Internal Release Limits

Step 3: Estimate PoS Curve

(1) Suppose that a true

B . 1050
value at time 0 is z.
102.5
zZ—
E 00.0 ;"
L .
4 o e
97.5 - - \ \'
950 T T T T T
0 10 20

Time
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Step 3: Estimate PoS Curve

(1) Suppose that a true

R . 1050
value at time 0 is z.
2
(1a) draw yo, ~ N(0,07y, ), .
an "observed" value 7
conditional on a posterior 5 |
> o,
sample. g oSS N R
Yo, - , =— P
97.5 | ANy
95.0 T T T T
0 10 20 30 40
Time
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Step 3: Estimate PoS Curve

(1) Suppose that a true

| . 105.0
value at time 0 is z.
2
(13) draw Yo, ~ N(O’Uyk)' 1025 -
an "observed" value z -
conditional on a posterior 5
sample. T IS e R
j/ok — . = e § D

(1b) predict ys;,, in or out L _ i NG

97.5 | - L
of [LL, UL] — N
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950 T T T T
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Step 3: Estimate PoS Curve

(1) Suppose that a true
value at time 0 is z.

(1a) draw yp, ~ N(O,Uf,k),

105.0

1025

an "observed" value 7

conditional on a posterior 5 )=

sample. T e

j/ok — £ s

(1b) predict ys;,, in or out '

of [LL, UL] .
YSL, —

Repeat (1a/1b) using all o

posterior samples to get 0 10 20 20 40

Pr(yOaYSL S [LI—, UL]) Time
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Step 3: Estimate PoS Curve

(1) Suppose that a true
value at time 0 is z.

105.0

(1a) draw yp, ~ N(O,Uf,k),

1025

an "observed" value z
conditional on a posterior 5 ]
3 0k t——
sample. o N— :
j/ok — § s

(1b) predict ys;,, in or out

of [LL, UL] .,
.ySLk —

RepeaTc (1a/1b) using all oL | | | |

posterlor samples to get 0 10 20 30 40

Pr(yOaYSL S [LI—, UL]) Time

Repeat this process over a
grid values of z.
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Applications Internal Release Limits

You get the following scatter plot of z vs PoS:

PosS that Y(0) and Y(SL) are in [LL, UL]

1.00 - e M
Do°o %
& o
B
075 - N °
i .
. o
. o
050 - ’
025-
0.00 - T T T
95.0 975 1000 1025 105.0

Level at Time =0
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Applications Internal Release Limits

Fit a spline to get a curve

1.00

0.75

0.50

0.25 |

PosS that Y(0) and Y(SL) are in [LL, UL]

0.00 T T T
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Applications Internal Release Limits

Find the intercept points with the 95% line

1.00

0.75

0.50

0.25 |

PosS that Y(0) and Y(SL) are in [LL, UL]

0.00 T T T
95.0 975 100.0 1025 105.0

Level at Time =0
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You get IRLjower and IRL pper-

PosS that Y(0) and Y(SL) are in [LL, UL]

1.00

0.75

0.50

0.25 |

0.00

95.0 975 100.0 1025

Level at Time =0

105.0
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End Result
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c g
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SAS Program

data oz;
call streaminit (10701);
do z = &11 to &ul by 0.1; /* loop over a find grid */
PoS = 0;
do i = 1 to nobs;
set irlOut nobs=nobs point=i; /* OUTPOST= data set */
y_0 = rand("normal", z, sqrt(s2y));
mn = y_O + rand("normal", bt, sqrt(s2gt)) * 36;
y_SL = rand("normal", mn, sqrt(s2y));
success = (y_0 < &UL and y_O > &LL) and
(y_dSL < &UL and y_dSL > &LL);
PoS = PoS + success/nobs;
end;
output;
end;
stop;
keep z PoS;
run;
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Applications Internal Release Limits

You can use PROC SGPLOT to fit a spline to the data:

proc sgplot noautolegend data=oz;

ods output sgplot=sg;

pbspline y=PoS x=z / nomarkers maxpoints=5000;
run;
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Applications Internal Release Limits

You can use PROC SGPLOT to fit a spline to the data:

proc sgplot noautolegend data=oz;

ods output sgplot=sg;

pbspline y=PoS x=z / nomarkers maxpoints=5000;
run;

The rest of the program is fairly straightforward.
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Thoughts on Prediction

The model used here is a simple random-effects model.
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at TIME=DL - they are conditionally independent.

The prediction replaces the random intercept mean () with the value of
Yo:

i ~ N(uj,07)
pij = "o+ TIMEj
Yo ~ N(Bo,0%)

At TIME=0, yj is a reasonable value to use as a plug in for [3p:

y_0 = rand("normal", z, sqrt(s2y));
mn = y_O0 + rand("normal", bt, sqrt(s2gt)) * 36;
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Thoughts on Prediction

The model used here is a simple random-effects model.

Technically, the observed values at yy do not impact the distribution of y
at TIME=DL - they are conditionally independent.

The prediction replaces the random intercept mean () with the value of
Yo:
yi ~ N(uj,o0)
pij = "o+ TIMEj
Yo ~ N(Bo,0%)
At TIME=0, yj is a reasonable value to use as a plug in for [3p:
y_0 = rand("normal", z, sqrt(s2y));

mn = y_O0 + rand("normal", bt, sqrt(s2gt)) * 36;
y_SL = rand("normal", mn, sqrt(s2y));

This gives a "pseudo-"conditional prediction model for y at TIME=SL.
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Alternatives

An alternative is to fit a repeated measurements model, which models yq
and any y; jointly.
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The data are unbalanced:

yO y3 y6 y9  yi2 y18 y24 y36 Batch
100.02 . 100.21 . 99.41 . 98.46 . V2_0
98.50 98.44 98.85 97.62 97.78 98.14 97.09 96.87 V2_1
100.33 5 100.05 5 99.99 5 98.60 V2_10

99.60 5 99.65 3 99.14 5 99.44 96.76 V2_2
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yO y3 y6 y9  yi2 y18 y24 y36 Batch
100.02 . 100.21 . 99.41 . 98.46 . V2_0
98.50 98.44 98.85 97.62 97.78 98.14 97.09 96.87 V2_1
100.33 5 100.05 5 99.99 5 98.60 V2_10

99.60 5 99.65 3 99.14 5 99.44 96.76 V2_2

While you can use PROC MCMC to fit this type of data, it is much easier
to do so with PROC BGLIMM.
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Unbalanced Repeated Measurements Model in PROC
BGLIMM

proc bglimm data=irl;
class time batch;
model level = / noint;
random int / subject = batch;
repeated int /subject = time type=un;

run;

Random intercept model (11 batches) with repeats in time (8 time points).
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Finishing Thoughts

@ These development represents part of SAS’ continuing effort to add
Bayesian capability to the software.
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Finishing Thoughts

@ These development represents part of SAS’ continuing effort to add
Bayesian capability to the software.

@ We are interested in

» establishing knowledge base and providing how-tos to our users who
are interested in Bayesian design and clinical trials

» identifying key areas where we can make improvements and
enhancements to our procedures, e.g. PROC MCMC, PROC BGLIMM,
etc

@ Give it a try in SAS University Edition, which is free to anyone who
wishes to learn

» Base SAS, SAS/STAT, SAS/IML, and part of SAS/ETS
» Most recent release
> www.sas.com/en_us/software/university-edition.html
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