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Software Overview

Bayesian Analysis in SAS/STAT®Software

SAS/STAT software includes procedures mainly for statistical analysis and
visualization. We take a number of routes in providing Bayesian capabilities
in the software:

In model-specific procedures that provide both frequentists and
Bayesian solutions:

I PROC PHREG, PROC GENMOD, PROC LIFEREG, PROC FMM, etc.
I The BAYES statement
I A set of frequently used prior distributions (noninformative, Jeffreys’)

General simulation procedure
I PROC MCMC

Fully Bayesian procedures for a class of models:
I PROC BGLIMM for generalized linear mixed models (GLMMs)

F New in SAS/STAT 15.1 (9.4 TS1M6, the 6th maintenance release)
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Software Overview

SAS 9.4

Release dates and versions of SAS 9.4:

Version Release Date STAT name
9.4 July 2013 STAT 12.3
9.4m1 December 2013 STAT 13.1
9.4m2 August 2014 STAT 13.2
9.4m3 July 2015 STAT 14.1
9.4m4 November 2016 STAT 14.2
9.4m5 September 2017 STAT 14.3
9.4m6 November 2018 STAT 15.1
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Software Overview

Version Information

To find out your version:

proc product_status;
run;

which produces something like:
...
For SAS/STAT ...

Custom version information: 15.1
...
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Software Overview PROC MCMC

PROC MCMC is a General Sampling Procedure

Your program represents how you would write the statistical model - it
is similar to PROC NLMIXED

You must specify all aspects of a statistical model: parameters, prior
distributions, random effects, how random effects enter the model,
likelihood function, and so on.
Statements simplify the specification of your statistical model, provide
coding convenience, and make the program readable.
Use DATA step programming statements in more complex scenarios
where the standard distributions or functions are inadequate.
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Software Overview PROC MCMC

Generality of PROC MCMC

The MCMC procedure fits

single-level or multilevel (hierarchical) models
linear or nonlinear models, such as regression, survival, ordinal
multinomial
multivariate analysis, latent variable models, state space models, PK
models
missing data problems
. . .

In addition, PROC MCMC supports

SAS DATA step programming language
user-defined sampling algorithms, functions, distributions.
prediction
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Software Overview PROC MCMC

Input Data Set

PROC MCMC takes in a SAS data set, which is a rectangular structure
that has variables (columns) and records (rows).

Name Height Weight

Alfred 69.0 112.5
Alice 56.5 84.0
Barbara 65.3 98.0
Carol 62.8 102.5
Henry 63.5 .
James 57.3 83.0
Jane 59.8 84.5
Janet 62.5 112.5

...

Missing values are coded as dots.
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Software Overview PROC MCMC

Syntax Reflects the Statistical Model

weighti ∼ N(µi , var = σ2), i = 1, . . . , n
µi = β0 + β1 · heighti

β0, β1 ∼ N(0, var = 100)

σ2 ∼ iGamma(shape = 2, scale = 2)

This is similar to what all general-purpose Bayesian software packages
(BUGS, NIMBLE, Stan, etc) strive for.

proc mcmc data=class;
parms b0 b1 s2;
prior b0 b1 ~ normal(0, var=100);
prior s2 ~ igamma(shape=2, scale=2);
mu = b0 + b1 * height;
model weight ~ normal(mu, var=s2);
run;
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Software Overview PROC MCMC

Procedure Offers Modeling Flexibility

weighti ∼ t(µ, sd = σ, df = 3) i = 1, . . . , n
µi = β0 + β1 · heighti

β0, β1 ∼ N(0, var = 100)

σ ∼ uniform(0, 25)

proc mcmc data=class seed=1 nbi=5000 nmc=10000 outpost=regOut;
parms b0 b1 sig;
prior b0 b1 ~ normal(0, var=100);
prior sig ~ uniform(0, 25);
mu = b0 + b1 * height;
model weight ~ t(mu, sd=sig, df=3);
run;
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Software Overview PROC MCMC

DATA Step Language Offers More Flexibility

weighti ∼ N(µi , var = σ2), i = 1, . . . , n

µi =

{
α + β1 · heighti if heighti < θ
α + β2 · heighti if heighti ≥ θ

proc mcmc data=class;
parms b0 b1 b2 s2 theta;
prior b: ~ normal(0, var=100);
prior s2 ~ igamma(shape=2, scale=2);
prior theta ~ uniform(0, 200);
if height < theta then

mu = b0 + b1 * height;
else

mu = b0 + b2 * height;
model weight ~ normal(mu, var=s2);
run;
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Software Overview PROC MCMC

Compare to BUGS

In WinBUGS, you see the entire data set and work with the matrix (do
indexing explicitly, for example).

height[] weight[]
69.0 112.5
56.5 84.0
65.3 98.0

...
66.5 112.0

END

model
{

for(i in 1:19) {
mu[i] = b0 + b1 * height[i]
weight[i] ~ dnorm(mu[i], tau)

}
b0 ~ dnorm(0, 0.1)
b1 ~ dnorm(0, 0.1)
tau ~ gamma(0.1, 0.1)

}

13 / 131



Software Overview PROC MCMC

Compare to BUGS

In PROC MCMC, you work with variables (think one record at a time).

height weight
69.0 112.5
56.5 84.0
65.3 98.0

...
66.5 112.0

prior b0 b1 ~ normal(0, prec=0.1);
prior tau ~ gamma(0.1, iscale=0.1);
mu = b0 + b1 * height;
model weight ~ dnorm(mu, prec=tau);

The variables height and weight are filled in with data set values as
PROC MCMC processes the input data set.

The variable mu is calculated on the fly.
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Software Overview PROC MCMC

Looping Over the Data Set

At each iteration, PROC MCMC steps through the data set, record by
record:

resolves symbols and processes programming statements
accumulates the loglikelihood

Obs Height Weight
1 69.0 112.5
2 56.5 84.0
3 65.3 98.0
...

19 66.5 112.0

proc mcmc data=input;
prior;
progm stmt;
model ;
run;

at the top of the data set

log π(θ|y) = log(f (y1|θ))
14 / 131
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Software Overview PROC MCMC

Looping Over the Data Set

At each iteration, PROC MCMC steps through the data set, record by
record:

resolves symbols and processes programming statements
accumulates the loglikelihood

Obs Height Weight
1 69.0 112.5
2 56.5 84.0
3 65.3 98.0
...

19 66.5 112.0

proc mcmc data=input;
prior;
progm stmt;
model;
run;

at the last observation, the prior is included

log π(θ|y) = log(π(θ)) +
∑n

i=1 log(f (yi |θ))
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Software Overview PROC MCMC

Sampling Algorithm Hierarchy

Continuous Discrete
Parameters Parameters

Users First User-Defined Samplers

When Applicable
Conjugate Conjugate
Direct Direct

Inverse CDF

All Others

RWM Discrete RWM
RWM-t Geometric RWM
HMC
NUTS
slice

Algorithms are multithreaded for fast performance.
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Software Overview PROC MCMC

Programming Order Matters

PROC MCMC relies on SAS programming language, hence the order
matters.

mu = beta0 + beta1 * x;
model y ~ normal(mu, var=s2);

is different from

model y ~ normal(mu, var=s2);
mu = beta0 + beta1 * x;
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Software Overview PROC MCMC

This means that you can reuse the same symbol in a program:

mu = beta0 + beta1 * x;
model y ~ normal(mu, var=s2);
mu = alpha0 + alpha2 * y;
model z ~ normal(mu, var=sz2);

or

if lambda ne 0 then
z = (y**lambda - 1) / lambda;

else
z = log(y);

model z ~ normal(mu, var=s2);
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Software Overview PROC MCMC

Minimize Redundant Computations

Most runtime is spent on executing programming statements over and over
again, at each iteration for every observation.

constant terms, ignored after initialization.

BEGINCNST;
w = 3;
ENDCNST;

redundant computations not carried out for every record:

BEGINNODATA;
tau = 1/sigma2;
ENDNODATA;
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Software Overview PROC MCMC

Features Relevant to Pharma Applications

Truncation and Censoring
Non-standard Distributions
Multivariate and Categorical Distributions
Hierarchical Models
Missing Data
Posterior Prediction
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Software Overview PROC MCMC

You Can Specify Truncated Distributions

Normalized distribution with bounds.

Univariate distributions support (optional) LOWER= and UPPER=
bounds.

prior alpha ~ n(0, sd=10, lower=0);
prior b ~ expon(scale=100, lower=100, upper=2000);

The bounds can be (functions of) random variables:

prior beta ~ n(0, sd=10, lower=alpha);
prior gamma ~ n(0, sd=10, lower=alpha * beta);
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Software Overview PROC MCMC

Or Work With Censored Data

Unobserved (missing) data that we know lie within some bounds but
can’t observe them

Univariate distribution support CLOWER= and CUPPER= censoring
option:

model y ~ normal(mu, sd=1, clower=cl, cupper=cr);

Missing y values become parameters and sampled accordingly.
The censoring indicators, cl and cr , can be missing (left-, right-,
interval censoring).
You can also use the marginal approach to model censored data (see
PROC MCMC documentation)
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Software Overview PROC MCMC

Non-Standard Distribution

You can specify non-standard distribution in PROC MCMC.

Suppose that a
distribution has the following density specification:

π(p) ∝ p−1(1− p)−1

⇒ log(π(p)) = −(log(p) + log(1− p))

You use the GENERAL function in PROC MCMC to specify the prior
distribution:

proc mcmc data=trials seed=17 nmc=20000 outpost=HalBin;
parm p 0.5;
lprior = -(log(p) + log(1-p));
prior p ~ general(lprior, lower=0, upper=1);
model event ~ binomial(n,p);
run;
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Software Overview PROC MCMC

Direct Simulation
You can use PROC MCMC to draw samples from a joint distribution with
marginal and conditional specifications (without data):

data a; run; /* make an empty data set */
proc mcmc data=a seed=79467 nmc=20000 outpost=two_out;

parm s2 mu;
prior s2 ~ cauchy(0, 5, lower=0); ! σ2 ∼ π(σ2)
prior mu ~ n(0, var=s2); ! µ ∼ π(µ|σ2)
model general(0);

run;

0 50 100 150 200

s2

-40 -20 0 20 40

mu
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Multivariate or Categorical Distributions

PROC MCMC also supports the following distributions:
dirich: Dirichlet
iwish: inverse-Wishart
mvn: multivariate normal
multinom: multinomial
table: categorical
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Model Response Variables (Likelihood Function)

MODEL dependent-variable-list ∼ distribution;

specifies the likelihood function. The dependent variables can be
data set variables

model y ~ normal(alpha, var=1);

functions of data set variables

w = log(y);
model w ~ normal(alpha, var=1);

You can specify multiple MODEL statements, one for a response variable:

model height ~ normal(mu, var=s2_h);
model weight ~ normal(b0 + b1 * height, var=s2_w);
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Use RANDOM Statement for Random Effects

Specify a random-effects model is fairly straightforward:

proc mcmc data=schools nmc=5000 seed=2157;
parm mu s2;
prior mu ~ n(0, sd=1000); ! µ ∼ N(0, 1000)
parm s2g ~ normal(0, sd=5, lower=0); ! σ2 ∼ half − normal
random theta ~ n(mu, var=s2g) subject=ID; ! θi ∼ N(µ, σ2)
model y ~ normal(theta, sd=s2y); ! yi ∼ N(θi , σ

2
y )

run;
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You can specify complex multilevel random-effects models:

multiple random effects
nested or non-nested hierarchical models
random-effects with non-normal prior
nonlinear models
various latent class models
autoregressive or spatially-distributed random effects

For generalized linear mixed-effects models, PROC BGLIMM offers an
easier alternative.
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Software Overview PROC MCMC

Missing Data

Missing values are represented using a period (.) in SAS data sets.

Missing response values are modeled by default:

model y ~ n(mu, var=1);

Each missing y becomes a parameter and is sampled. This is
equivalent to Missing at Random (MAR).
PROC MCMC supports partial missing:

array data[3] y1 y2 y3;
model data ~ mvn(mu, Sigma);

or

llike = f(y1, y2, y3);
model y1 y2 y3 ~ general(llike);

You can have partial missing in any of the response variables.
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Various Missing Data Scenarios

You can carry out a complete-case analysis

proc mcmc ... missing=CC;

PROC MCMC discards all records with missing values. This is
equivalent to Missing Completely at Random (MCAR).

You can also model Missing Not at Random (MNAR) data
I selection model approach
I pattern mixture approach

Or an all-case analysis

proc mcmc ... missing=AC;

This gives you the control on how to handle the missing values directly.

29 / 131



Software Overview PROC MCMC

Various Missing Data Scenarios

You can carry out a complete-case analysis

proc mcmc ... missing=CC;

PROC MCMC discards all records with missing values. This is
equivalent to Missing Completely at Random (MCAR).
You can also model Missing Not at Random (MNAR) data

I selection model approach
I pattern mixture approach

Or an all-case analysis

proc mcmc ... missing=AC;

This gives you the control on how to handle the missing values directly.

29 / 131



Software Overview PROC MCMC

Various Missing Data Scenarios

You can carry out a complete-case analysis

proc mcmc ... missing=CC;

PROC MCMC discards all records with missing values. This is
equivalent to Missing Completely at Random (MCAR).
You can also model Missing Not at Random (MNAR) data

I selection model approach
I pattern mixture approach

Or an all-case analysis

proc mcmc ... missing=AC;

This gives you the control on how to handle the missing values directly.

29 / 131



Software Overview PROC MCMC

Posterior Prediction

Sample ypred from

π(ypred|y) =

∫
π(ypred|θ, y)π(θ|y)dθ

There are three ways to do that in PROC MCMC:

In-procedure approach
Missing data approach
Use the PREDDIST statement
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Model-Specific Bayesian Procedures

SAS/STAT has two such procedures:

PROC BCHOICE: Bayesian discrete choice models
PROC BGLIMM: Bayesian generalized linear mixed models

Both procedures use model-specific algorithms to draw samples from the
joint posterior distribution.

PROC BGLIMM was release in SAS/STAT 15.1.
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Mixed Models

A mixed model (random-effects) is a model that contains fixed and random
effects.

Y = Xβ + Zγ + ε

γ ∼ N(0,G)

ε ∼ N(0,R)

the parameter β is considered fixed and γ (random effects) are random.

Estimation (frequentist) is achieved by maximizing the marginal likelihood
of the fixed-effects parameter while integrating out the random effects.
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Mixed Modeling Procedures in SAS

PROC MIXED fits linear mixed-effects models:

Y = Xβ + Zγ + ε; γ ∼ N(0,G) ε ∼ N(0,R)

PROC GLIMMIX fits generalized linear mixed-effects models:

E [Y|γ] = g−1(η) = g−1(η = Xβ + Zγ)

where η is the linear predictor and g−1(·) is the inverse link function
PROC NLMIXED includes nonlinear capabilities:

I Y relates to η via nonlinear transformation
I the random effects enters the model nonlinearly
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Bayesian Approach

The Bayesian paradigm (π(θ|Y) ∝ π(θ) · L(Y;θ)) fits the same class of
models but treats every parameter, fixed effect or random effect, as
random:

Y = Xβ + Zγ + ε same likelihood function
β ∼ π(β)

γ ∼ N(0,G) same prior on RE
G ∼ π(G)

R ∼ π(R)

The Bayesian approach estimates the joint posterior of
π(β,γ,R,G|Y,X,Z) and infers from the marginal posterior π(β|Y,X,Z).
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Mixed Modeling Procedures

Likelihood
Function

RE Dist
Linear

Predictor
Hierarchy

MIXED Normal Normal Xβ + Zγ Nested & Non-Nested
GLIMMIX GLM Normal Xβ + Zγ Nested & Non-Nested
NLMIXED General Normal General Nested

Nested students within classes.
Non-Nested students taking lessons from different teachers.
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PROC MCMC

Likelihood
Function

RE Dist
Linear

Predictor
Hierarchy

MIXED Normal Normal Xβ + Zγ Nested & Non-Nested
GLIMMIX GLM Normal Xβ + Zγ Nested & Non-Nested
NLMIXED General Normal General Nested

MCMC General General General Nested & Non-Nested

PROC MCMC offers flexibility.
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PROC BGLIMM

Likelihood
Function

RE Dist
Linear

Predictor
Hierarchy

MIXED Normal Normal Xβ + Zγ Nested & Non-Nested
GLIMMIX GLM Normal Xβ + Zγ Nested & Non-Nested
NLMIXED General Normal General Nested
BGLIMM GLM Normal Xβ + Zγ Nested & Non-Nested

PROC BGLIMM fits a smaller class of models but with much ease.
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PROC BGLIMM Shares Similar Syntax to PROC
MIXED/PROC GLIMMIX

If you are somewhat familiar with PROC MIXED and PROC GLIMMIX,
transition to PROC BGLIMM is not difficult.

You have the usual suspects in

MODEL Statement: specifies the response (y), fixed effects (x),
likelihood function (dist=), and link function (link=)
RANDOM Statement: specifies the random effects and the G-side
variance/covariance structure
REPEATED Statement: specifies the R-side residual var/cov structure
CLASS Statement (not supported in PROC MCMC)
ESTIMATE Statement

37 / 131



Software Overview PROC BGLIMM

PROC BGLIMM Shares Similar Syntax to PROC
MIXED/PROC GLIMMIX

If you are somewhat familiar with PROC MIXED and PROC GLIMMIX,
transition to PROC BGLIMM is not difficult.
You have the usual suspects in

MODEL Statement: specifies the response (y), fixed effects (x),
likelihood function (dist=), and link function (link=)

RANDOM Statement: specifies the random effects and the G-side
variance/covariance structure
REPEATED Statement: specifies the R-side residual var/cov structure
CLASS Statement (not supported in PROC MCMC)
ESTIMATE Statement

37 / 131



Software Overview PROC BGLIMM

PROC BGLIMM Shares Similar Syntax to PROC
MIXED/PROC GLIMMIX

If you are somewhat familiar with PROC MIXED and PROC GLIMMIX,
transition to PROC BGLIMM is not difficult.
You have the usual suspects in

MODEL Statement: specifies the response (y), fixed effects (x),
likelihood function (dist=), and link function (link=)
RANDOM Statement: specifies the random effects and the G-side
variance/covariance structure

REPEATED Statement: specifies the R-side residual var/cov structure
CLASS Statement (not supported in PROC MCMC)
ESTIMATE Statement

37 / 131



Software Overview PROC BGLIMM

PROC BGLIMM Shares Similar Syntax to PROC
MIXED/PROC GLIMMIX

If you are somewhat familiar with PROC MIXED and PROC GLIMMIX,
transition to PROC BGLIMM is not difficult.
You have the usual suspects in

MODEL Statement: specifies the response (y), fixed effects (x),
likelihood function (dist=), and link function (link=)
RANDOM Statement: specifies the random effects and the G-side
variance/covariance structure
REPEATED Statement: specifies the R-side residual var/cov structure

CLASS Statement (not supported in PROC MCMC)
ESTIMATE Statement

37 / 131



Software Overview PROC BGLIMM

PROC BGLIMM Shares Similar Syntax to PROC
MIXED/PROC GLIMMIX

If you are somewhat familiar with PROC MIXED and PROC GLIMMIX,
transition to PROC BGLIMM is not difficult.
You have the usual suspects in

MODEL Statement: specifies the response (y), fixed effects (x),
likelihood function (dist=), and link function (link=)
RANDOM Statement: specifies the random effects and the G-side
variance/covariance structure
REPEATED Statement: specifies the R-side residual var/cov structure
CLASS Statement (not supported in PROC MCMC)

ESTIMATE Statement

37 / 131



Software Overview PROC BGLIMM

PROC BGLIMM Shares Similar Syntax to PROC
MIXED/PROC GLIMMIX

If you are somewhat familiar with PROC MIXED and PROC GLIMMIX,
transition to PROC BGLIMM is not difficult.
You have the usual suspects in

MODEL Statement: specifies the response (y), fixed effects (x),
likelihood function (dist=), and link function (link=)
RANDOM Statement: specifies the random effects and the G-side
variance/covariance structure
REPEATED Statement: specifies the R-side residual var/cov structure
CLASS Statement (not supported in PROC MCMC)
ESTIMATE Statement

37 / 131



Software Overview PROC BGLIMM

Procedure Details: Syntax

PROC BGLIMM Statement ’

This statement includes these commonly used options:

DATA= names the input data set
DIC computes the deviance information criterion
NBI= specifies the number of burn-in iterations
NMC= specifies the number of iterations, excluding the burn-ins
OUTPOST= names the output data set to contain posterior samples
SEED= specifies the random seed for simulation
STATS= controls posterior statistics
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Procedure Details: Syntax

MODEL response = fixed-effects < / model-options>;

This statement specifies the response and fixed-effects parameters. You
can also use this statement to specify the response distribution via the
DIST= option and to specify the link function g(·) via the LINK= option.

Some other useful options follow:
NOINT excludes the fixed-effects intercept from the model.
OFFSET= specifies the offset variable.
COEFFPRIOR= specifies the prior of the fixed-effects coefficients.
SCALEPRIOR= specifies the prior of the scale parameter.
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Simple Linear Regression with Class Variable

proc bglimm data=Sashelp.Class nmc=10000 thin=2
seed=436792 outpost=Classout;
class sex;
model Weight = Height Age Sex / cprior=normal(var=1e6);

run;

The CPRIOR= option specifies the prior distribution for the coefficient
prior (β’s).

There are default priors for all parameters.
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Procedure Details: Syntax

Built-In Resposne Distributions:

DIST= Distribution
Option Value Function

BINARY Binary
BINOMIAL Binary or binomial
EXPONENTIAL | EXPO Exponential
GAMMA | GAM Gamma
GEOMETRIC | GEOM Geometric
INVGAUSS | IG Inverse Gaussian
NEGBINOMIAL | NEGBIN | NB Negative binomial
NORMAL | GAUSSIAN | GAUSS Normal
POISSON | POI Poisson
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Procedure Details: Syntax

Default and Commonly Used Link Functions:

Distributions Default Other Commonly Used
Link Function Link Functions

BINARY Logit Probit, comp log-log, log-log
BINOMIAL Logit Probit, comp log-log, log-log
EXPONENTIAL Log Reciprocal
GAMMA Log Reciprocal
GEOMETRIC Log
INVGAUSS Reciprocal square
NEGBINOMIAL Log
NORMAL Identity Log
POISSON Log

42 / 131



Software Overview PROC BGLIMM

Procedure Details: Syntax

RANDOM random-effects < / options>;

Defines the Z design matrix for the random effects, γ, and the covariance
structure of the G matrix.

SUBJECT= option to identify the subjects for the random effects and
thus to set up the blocks of G. A set of random effects is estimated
for each subject level.
GROUP= option to identify groups by which to vary the covariance
parameters; each new level of the grouping effect produces a new set
of covariance parameters
TYPE= option to define the covariance structure of G.
You can specify multiple RANDOM statements.
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Logistic Random-Effects Model
Example program:

proc bglimm data=MultiCenter nmc=10000 seed=976352;
class Center Group;
model SideEffect/N = Group / noint;
random int / subject = Center;

run;

Recall that the mixed model setup in BGLIMM follows the standard
convention:

E [Y |β,γ] = g−1(η) = g−1(Xβ + Zγ)

The random effects are assumed normally distributed:

γi ∼ N(0,Gi)
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Multiple RANDOM Statements

You can add multiple random effects to the model:

proc bglimm data=a;
class Analyst Run Plate conc;
model log_assay = Analyst conc ;
random int / subject=run(analyst)

covprior=uniform(lower=0, upper=2) s;
random int / subject=plate(run*analyst)
covprior=halfnormal(var=4) s;

run;

The random effects can be nested or nonnested.

The COVPRIOR= option provides choices on the prior distribution of the
G -sided variance/covariance parameter.
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Procedure Details: Syntax
Types of covariance structures:

Structure Description

ANTE(1) Antedependence
AR(1) Autoregressive(1)
ARH(1) Heterogeneous AR(1)
ARMA(1,1) ARMA(1,1)
CS Compound symmetry
CSH Heterogeneous compound symmetry
FA(1) Factor analytic
HF Huynh-Feldt
TOEP Toeplitz
TOEP(q) Banded Toeplitz
TOEPH Banded heterogeneous Toeplitz
UN Unstructured
UN(q) Banded unstructured
VC Variance components
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Procedure Details: Syntax

REPEATED repeated-effect < / options>;

Secifies the R matrix in the model.
A repeated-effect is required to define the proper location of the
repeated responses. The levels of the repeated-effect must be different
for each observation within a subject.
SUBJECT= option to set up the blocks of R.
GROUP= option to identify groups by which to vary the covariance
parameters; each new level of the grouping effect produces a new set
of covariance parameters.
TYPE= option to define the covariance structure.
You can specify only one REPEATED statement.
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Repeated Measures Model

The REPEATED statement models balanced/unbalanced repeated
measurements data:

proc bglimm data=Fev nmc=10000 seed=44672057
outpost=FevOut;

class Drug Patient Hour;
model FEV = BaseVal Drug Hour;
random int / subject=Patient;
repeated Hour / subject=Patient(Drug) type=un;

run;

Only the MVN likelihood is supported in this release.
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Model Heterogeneity

The GROUP= option models different covariance types for different groups:

proc bglimm data=pr seed=475193 outpost=pr_out;
class Person Gender Time;
model Distance = Age|Gender;
repeated Time / type=un subject=Person group=Gender;

run;
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Misc Features

PROC BGLIMM models missing response variable by default.

This corresponds to Missing at Random (MAR).

You can use PROC BGLIMM for prediction via the missing data approach.
Much in the same way as PROC GLIMMIX does it.

The procedure supports a suite of prior distributions for β, G and R
parameters, in addition to many different types of covariance structures
(TYPE=).

The procedure uses model-specific sampling algorithms (more efficient than
PROC MCMC), and they are threaded for performance.
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Applications Power Prior: Kociba Case Study

A Case Study on the Benchmark Approach in Toxicology

The benchmark approach is a useful tool in toxicology.

The benchmark dose (BMD) is defined as the dose of an
environmental toxicant that corresponds to a prescribed change in
response compared with the background response level.
The toxicological data comprises n binomial responses
y = (y1, . . . , yn) with yi ∼ b(ni , pi ), where ni is the number of
animals tested at dose level xi and pi is the probability that an animal
gives an adverse response at dose level xi ,

pi =
exp(β0 + β1xi )

1 + exp(β0 + β1xi )
, i = 1, . . . , n.

52 / 131



Applications Power Prior: Kociba Case Study

A Case Study on the Benchmark Approach in Toxicology

The benchmark approach is a useful tool in toxicology.
The benchmark dose (BMD) is defined as the dose of an
environmental toxicant that corresponds to a prescribed change in
response compared with the background response level.

The toxicological data comprises n binomial responses
y = (y1, . . . , yn) with yi ∼ b(ni , pi ), where ni is the number of
animals tested at dose level xi and pi is the probability that an animal
gives an adverse response at dose level xi ,

pi =
exp(β0 + β1xi )

1 + exp(β0 + β1xi )
, i = 1, . . . , n.

52 / 131



Applications Power Prior: Kociba Case Study

A Case Study on the Benchmark Approach in Toxicology

The benchmark approach is a useful tool in toxicology.
The benchmark dose (BMD) is defined as the dose of an
environmental toxicant that corresponds to a prescribed change in
response compared with the background response level.
The toxicological data comprises n binomial responses
y = (y1, . . . , yn) with yi ∼ b(ni , pi ), where ni is the number of
animals tested at dose level xi and pi is the probability that an animal
gives an adverse response at dose level xi ,

pi =
exp(β0 + β1xi )

1 + exp(β0 + β1xi )
, i = 1, . . . , n.

52 / 131



Applications Power Prior: Kociba Case Study

The Two Benchmark Studies in Toxicology

The Kociba study (Kociba et al. 1978) is a lifetime feeding study of
both female and male Sprague Dawley rats, with 50 rats tested in
each group at doses of 0, 1, 10, and 100 ng/kg/day. Inferences
derived from the Kociba study have been widely used as the basis for
risk assessments for 2,3,7,8-tetrachlorodibenzodioxin (TCDD).

The National Toxicology Program (NTP) study (National Toxicology
Program 1982) is a study in which groups of 50 male rats, 50 female
rats, and 50 male mice received TCDD as a suspension in 9:1 corn
oil-acetone by gavage twice each week to achieve doses of 0, 10, 50,
or 500 ng/kg/week for two years.
In this analysis, we treat the Kociba study as the historical data and
the NTP study the current data.
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Benchmark Data Summary and Parameter Estimates

Study TCDD(ng/kg/day) and Response Estimates
Kociba Control (or 0) 1 10 100 β0 (SD) β1 (SD)

9/86 3/50 18/50 34/48 -1.785 (0.210) 0.028 (0.004)
NTP Control (or 0) 1.4 7.1 71 β0 (SD) β1 (SD)

5/75 1/49 3/50 12/49 -3.030 (0.366) 0.026 (0.007)
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Datasets

data KOCIBA;
input y n dose;

datalines;
9 86 0
3 50 1

18 50 10
34 48 100
;

data NTP;
input y n dose;

datalines;
5 75 0
1 49 1.4
3 50 7.1

12 49 71
;

y : response
n : number of patients

dose : dosage
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Logistic Regression with Flat Prior

proc mcmc data=kociba nmc=50000 seed=70273
propcov=quanew outpost=kociba_flat;
parm b0 0 b1 0;
prior b: ~ general(0);
p = logistic(b0 + b1 * dose);
model y ~ binomial(n, p);

run;

general(0) : flat prior on β0 and β1

logistic : p = exp(µ)
1+exp(µ)
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Joint Posterior Distributions from Two Separate Analysis
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Marginal Posterior Densities of β0 and β1
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Prediction Curves from the Noninformative Analysis
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Power Prior using PROC MCMC

There are two ways to fit a power prior using PROC MCMC:

Combined Approach
I Form a larger data set and put a weight (a0) on each observation

Conventional Approach
I Use the historical data to construct the power prior
I Use the current data for the (binomial) likelihood function

Each has its pros and cons.
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Combined Approach

First recognize that the posterior distribution can be rewritten as:

p(θ|D∗, a0) ∝
n+n0∏
i=1

fi (yi |θ, xi ) · π0(θ)

where fi =

{
f (yi |θ, xi ) for each i in the current data set
f (y0,i |θ, x0,i )

a0 for each i in the historical data set

You can create a combined data set and assign separate likelihood
functions to different observations.
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Combine Data Sets

You first combine both data sets:

data combined;
format group $8.;
set kociba(in=i) ntp;
if i then group = "pilot";
else group = "current";
run;

⇒

y n dose group
9 86 0.0 pilot
3 50 1.0 pilot

18 50 10.0 pilot
34 48 100.0 pilot
5 75 0.0 current
1 49 1.4 current
3 50 7.1 current

12 49 71.0 current
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Binomial Model: Power Prior
For each observation in the new combined data set, the likelihood function
is either:

a binomial (if group == ’current’) or
a weighted binomial (if group == ’pilot’)

%let a0=0.3;
proc mcmc data=combined nmc=50000 seed=70273

propcov=quanew outpost=ntp_power;
parm b0 0 b1 0;
prior b: ~ general(0);
p = logistic(b0 + b1 * dose);
llike = logpdf("binomial", y, p, n);
if group eq "pilot" then
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Alternatively, you can put the weight a0 in the combined data set:

data combined; y n dose a0
set kociba(in=i) ntp; 9 86 0.0 0.3
if i then a0 = 0.3; 3 50 1.0 0.3
else a0 = 1; ...

5 75 0.0 1.0
1 49 1.4 1.0

...

proc mcmc data=combined ...;
parm b0 0 b1 0;
prior b: ~ general(0);
p = logistic(b0 + b1 * dose);
llike = a0 * logpdf("binomial", y, p, n);
model y ~ general(llike);

run;

This produces the same posterior estimates.
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Notes on Combined Approach

The combined approach in fitting power prior is intuitive and easy to
implement;

The setup is generic to many model specifications, as long as the
conditional independence assumption (e.g. in the likelihood function) holds.

There are some issues with this approach:
DIC calculation, which should only depend on D, not D0, cannot be
correctly calculated within the procedure. Post-simulation calculation
(use DATA step for example) can be tedious.
Cannot be extended to normalized power prior due to an integral
calculation

Will discuss these issues in later slides.
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Conventional Approach in Fitting Power Prior

This approach specifies the power prior in its original form
π(θ|D0, a0) ∝ L(θ|D0)a0π0(θ), which depends on the pilot (KOCIBA) data
set.

Use read_array function to store the KOCIBA data set in an array
Use DO-loop to compute the power prior
Use the general function to specify the non-standard prior
distribution
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%let a0=0.3;
proc mcmc data=ntp ...; ! use the current data set

array pdata[1] / nosymbols; ! array to store the pilot data set
begincnst;
rc = read_array("kociba", pdata); ! save kociba data in pdata
nobs = dim(pdata, 1);
endcnst;

parm b0 0 b1 0;
beginprior;
lp = 0;
do j = 1 to nobs; ! loop through the pilot data

p = logistic(b0 + b1 * pdata[j,3]);
lp = lp+logpdf("binomial", pdata[j,1],p,pdata[j,2]); ! log(L(θ; D0))
end;

lp = &a0 * lp; ! a0 · log(L(θ; D0))
prior b0 b1 ~ general(lp);
endprior;

p = logistic(b0 + b1 * dose);
model y ~ binomial(n, p);
run;
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Notes on Conventional Approach

This approach is requires more coding:

The objective function needs to be coded at two places:
I once in the MODEL statement (NTP), the looping of observations is

implicit
I once in the prior construction (KOCIBA), the looping of observations is

explicit

More susceptible to coding errors

But this approach makes extensions easier.

Use either approaches, depending on what you want to do.
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Power Prior with a0 = 0.3

Compare to page 81
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Marginal Posterior Comparisons

Compare to page 82
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Fitted Curve Comparisons
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An Immediate Question

How to choose an "optimal" value of a0?

Model comparison:
I Deviance Information Criterion (DIC)
I Penalized Likelihood-type Criterion (PLC)
I Marginal Likelihood Criterion (MLC)
I Logarithm of the Pseudo-Marginal Likelihood Criterion (LPML)

Treat a0 as a parameter and let the data inform:
I Normalized power prior

Here we cover DIC and normalized power prior.
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Deviance Information Criterion

DIC (Spiegelhalter et al., 2002, JRSSB, 64:583) is a Bayesian
alternative to AIC and BIC, a model assessment and selection tool.
The criterion can be applied to non-nested models and models that
have non-iid data.
A smaller DIC indicates a better fit to the data.
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Deviance Information Criterion (DIC)

DIC = D(θ) + pD = D(θ) + 2pD

where

D(θ) = 2 (log(f (y))− log(p(y|θ))) is the deviance
where

I p(y|θ) is the likelihood function
I f (y) is a constant term that is not calculated

D(θ) is posterior mean of the deviance, approximated by
1
n

∑n
t=1 D(θt). The expected deviation measures how well the model

fits the data.
D(θ) is the deviance evaluated at θ̄, equal to −2 log(p(y|θ̄)). It is the
deviance evaluated at your “best” posterior estimate.
pD is the effective number of parameters.
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DIC Computation

PROC MCMC supports a DIC option, which computes the DIC value:

proc mcmc data=NTP ... DIC;

For a0 = 0.3:

Deviance Information Criterion

Dbar (posterior mean of deviance) 17.950
Dmean (deviance evaluated at posterior mean) 16.622
pD (effective number of parameters) 1.329
DIC (smaller is better) 19.279
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Compare DIC Values with Different a0
You run parallel analysis over a grid of a0 values, choose an a0 that
produces the lowest DIC value.

Good time for BY group processing.

data NTP_by;
set NTP;
do a0 = 0.05, 0.15, 0 to 1 by 0.1;

output;
end;

run;

proc sort data=ntp_by;
by a0;
run;

⇒

y n dose a0
5 75 0.0 0.00
1 49 1.4 0.00
3 50 7.1 0.00

12 49 71.0 0.00
...

5 75 0.0 0.10
1 49 1.4 0.10
3 50 7.1 0.10

12 49 71.0 0.10
...

5 75 0.0 1.00
1 49 1.4 1.00
3 50 7.1 1.00

12 49 71.0 1.00
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DIC Computation using PROC MCMC

ods output dic=ntp_dic; ! save DIC results to a data set
proc mcmc data=ntp_by ... dic;

by a0; ! 13 simulations are performed

array pdata[1] / nosymbols;
begincnst;
rc = read_array("kociba", pdata); ! must read in KOCIBA
nobs = dim(pdata, 1); ! data set separately
endcnst;
...
lp = a0 * lp; ! for each BY group, a different a0 value is used.
prior b0 b1 ~ general(lp);

p = logistic(b0 + b1 * dose);
model y ~ binomial(n, p);
run;
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DIC Values vs a0

This suggests a small value of a0 (0.05 or 0.1) is preferred.
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Variability in DIC

There are two sources of variability in DIC computation:

distributional variability (data)
sampling variability (monte carlo)

The data variability is difficult to get a handle on - requires repeats of the
data, perhaps using bootstrap. But not always realistic.

The sampling variability can be accessed by repeating the simulation many
times (another BY variable) and compare the distributions of the DIC.

by a0 rep;

This takes sometime to run, about five minutes (100 repeats per a0,
NMC=50,000).
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Monte Carlo Variability
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Power Prior with a0 = 0.1

Compare to page 69
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Marginal Posterior Comparisons

Compare to page 70
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Prior on a0

Placing a hyper prior, π(a0), on the weight parameter is not as
straightforward as it seems.

Multiplying the unnormalized power prior,
L(β;D0)a0 · π0(β), and π(a0) does not lead to the right joint prior:

p(β, a0|D0) ∝ p(β|D0, a0) · π(a0)

=
L(β;D0)a0 · π0(β)∫
L(β;D0)a0 · π0(β)dβ

· π0(a0)

=
1

C (a0)
· L(β;D0)a0 · π0(β) · π0(a0)

6∝ L(β;D0)a0 · π0(β) · π0(a0)

The normalizing constant C (a0) requires integration.

For more information on the normalized Power Prior, see Neuenschwander,
Branson, and Spiegelhalter (2009, Statisti. Med. 28:3562)

83 / 131



Applications Power Prior: Kociba Case Study

Prior on a0

Placing a hyper prior, π(a0), on the weight parameter is not as
straightforward as it seems. Multiplying the unnormalized power prior,
L(β;D0)a0 · π0(β), and π(a0) does not lead to the right joint prior:

p(β, a0|D0) ∝ p(β|D0, a0) · π(a0)

=
L(β;D0)a0 · π0(β)∫
L(β;D0)a0 · π0(β)dβ

· π0(a0)

=
1

C (a0)
· L(β;D0)a0 · π0(β) · π0(a0)

6∝ L(β;D0)a0 · π0(β) · π0(a0)

The normalizing constant C (a0) requires integration.

For more information on the normalized Power Prior, see Neuenschwander,
Branson, and Spiegelhalter (2009, Statisti. Med. 28:3562)

83 / 131



Applications Power Prior: Kociba Case Study

Prior on a0

Placing a hyper prior, π(a0), on the weight parameter is not as
straightforward as it seems. Multiplying the unnormalized power prior,
L(β;D0)a0 · π0(β), and π(a0) does not lead to the right joint prior:

p(β, a0|D0) ∝ p(β|D0, a0) · π(a0)

=
L(β;D0)a0 · π0(β)∫
L(β;D0)a0 · π0(β)dβ

· π0(a0)

=
1

C (a0)
· L(β;D0)a0 · π0(β) · π0(a0)

6∝ L(β;D0)a0 · π0(β) · π0(a0)

The normalizing constant C (a0) requires integration.

For more information on the normalized Power Prior, see Neuenschwander,
Branson, and Spiegelhalter (2009, Statisti. Med. 28:3562)

83 / 131



Applications Power Prior: Kociba Case Study

Prior on a0

Placing a hyper prior, π(a0), on the weight parameter is not as
straightforward as it seems. Multiplying the unnormalized power prior,
L(β;D0)a0 · π0(β), and π(a0) does not lead to the right joint prior:

p(β, a0|D0) ∝ p(β|D0, a0) · π(a0)

=
L(β;D0)a0 · π0(β)∫
L(β;D0)a0 · π0(β)dβ

· π0(a0)

=
1

C (a0)
· L(β;D0)a0 · π0(β) · π0(a0)

6∝ L(β;D0)a0 · π0(β) · π0(a0)

The normalizing constant C (a0) requires integration.

For more information on the normalized Power Prior, see Neuenschwander,
Branson, and Spiegelhalter (2009, Statisti. Med. 28:3562)

83 / 131



Applications Power Prior: Kociba Case Study

Prior on a0

Placing a hyper prior, π(a0), on the weight parameter is not as
straightforward as it seems. Multiplying the unnormalized power prior,
L(β;D0)a0 · π0(β), and π(a0) does not lead to the right joint prior:

p(β, a0|D0) ∝ p(β|D0, a0) · π(a0)

=
L(β;D0)a0 · π0(β)∫
L(β;D0)a0 · π0(β)dβ

· π0(a0)

=
1

C (a0)
· L(β;D0)a0 · π0(β) · π0(a0)

6∝ L(β;D0)a0 · π0(β) · π0(a0)

The normalizing constant C (a0) requires integration.

For more information on the normalized Power Prior, see Neuenschwander,
Branson, and Spiegelhalter (2009, Statisti. Med. 28:3562)

83 / 131



Applications Power Prior: Kociba Case Study

Prior on a0

Placing a hyper prior, π(a0), on the weight parameter is not as
straightforward as it seems. Multiplying the unnormalized power prior,
L(β;D0)a0 · π0(β), and π(a0) does not lead to the right joint prior:

p(β, a0|D0) ∝ p(β|D0, a0) · π(a0)

=
L(β;D0)a0 · π0(β)∫
L(β;D0)a0 · π0(β)dβ

· π0(a0)

=
1

C (a0)
· L(β;D0)a0 · π0(β) · π0(a0)

6∝ L(β;D0)a0 · π0(β) · π0(a0)

The normalizing constant C (a0) requires integration.

For more information on the normalized Power Prior, see Neuenschwander,
Branson, and Spiegelhalter (2009, Statisti. Med. 28:3562)

83 / 131



Applications Power Prior: Kociba Case Study

Prior on a0

Placing a hyper prior, π(a0), on the weight parameter is not as
straightforward as it seems. Multiplying the unnormalized power prior,
L(β;D0)a0 · π0(β), and π(a0) does not lead to the right joint prior:

p(β, a0|D0) ∝ p(β|D0, a0) · π(a0)

=
L(β;D0)a0 · π0(β)∫
L(β;D0)a0 · π0(β)dβ

· π0(a0)

=
1

C (a0)
· L(β;D0)a0 · π0(β) · π0(a0)

6∝ L(β;D0)a0 · π0(β) · π0(a0)

The normalizing constant C (a0) requires integration.

For more information on the normalized Power Prior, see Neuenschwander,
Branson, and Spiegelhalter (2009, Statisti. Med. 28:3562)

83 / 131



Applications Power Prior: Kociba Case Study

Prior on a0

Placing a hyper prior, π(a0), on the weight parameter is not as
straightforward as it seems. Multiplying the unnormalized power prior,
L(β;D0)a0 · π0(β), and π(a0) does not lead to the right joint prior:

p(β, a0|D0) ∝ p(β|D0, a0) · π(a0)

=
L(β;D0)a0 · π0(β)∫
L(β;D0)a0 · π0(β)dβ

· π0(a0)

=
1

C (a0)
· L(β;D0)a0 · π0(β) · π0(a0)

6∝ L(β;D0)a0 · π0(β) · π0(a0)

The normalizing constant C (a0) requires integration.

For more information on the normalized Power Prior, see Neuenschwander,
Branson, and Spiegelhalter (2009, Statisti. Med. 28:3562)

83 / 131



Applications Power Prior: Kociba Case Study

Numerical Integral Function

To compute the normalizing constant, you need an integral function
(DATA step is doable, but it is complicated).

PROC MCMC supports a native CALL QUAD subroutine that computes the
integral of a user-specific function.

CALL QUAD("ObjFun", Res, LLimit, ULimit <, args>);

ObjFun : name of an integrand function (defined using PROC FCMP)
Res : result

Limit : lower and upper limits (of the w.r.t. parameters)
arg : arguments to the ObjFun (e.g. data set variables, parameters)

The first four arguments are location specific. The w.r.t. parameter(s) is
specified in the definition of the ObjFun function.
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Applications Power Prior: Kociba Case Study

Define Objective Function

The objective function (e.g. L(β;D0)a0 · π0(β)) is defined using PROC
FCMP:

PROC FCMP outlib=sasuser.funcs.power;
SUBROUTINE ObjFun(parm, obj, vars);
OUTARGS obj;
obj = f(parm, vars ...);
endsub;

run;

outlib : location to store the objective function
parm : w.r.t. parameters (e.g. β)
obj : integrand (e.g. C (a0), must be declared as an OUTARGS
vars : variables needed to construct the integrand
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Applications Power Prior: Kociba Case Study

Integration over D0

Integral of sums is not the sum of integrals!

The integral must be computed using the entire historical data set (D0).

You cannot use the combined dataset approach to compute integral by
observation.

The object function must be written using the pdata array.
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Specifying [L(β0, β1|D0)]
a0 in PROC FCMP

proc fcmp outlib=sasuser.funcs.power;
subroutine bPower(beta[*], den, pdata[*,*], a0); !integration w.r.t. β
outargs den;
nobs = dim(pdata, 1);
lp = 0;
do j = 1 to nobs;

p = logistic(beta[1] + beta[2] * pdata[j,3]);
lp = lp + logpdf("binomial", pdata[j,1], p, pdata[j,2]);
end;

den = exp(a0 * lp); ! [L(β0, β1|D0)]
a0

endsub;
run;

The OUTLIB= option specifies the library that stores the objective
function.
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Fitting Normalized Power Prior in PROC MCMC
options cmplib=sasuser.funcs;
proc mcmc data=ntp ...

...
array beta[2] b0 b1;
array lower[2] -100 -100; ! integration lower bound
array upper[2] 100 100; ! integration upper bound

prior a0 ~ uniform(0, 1); ! a0 is a parameter
beginprior;
lp = 0;
do j = 1 to nobs;

p = logistic(beta[1] + beta[2] * pdata[j,3]);
lp = lp + logpdf("binomial", pdata[j,1], p, pdata[j,2]);
end;

CALL QUAD('bPower', C, lower, upper, pdata, a0); ! C = C(a0)
lp = -log(C) + a0 * lp;
endprior;
prior b0 b1 ~ general(lp);
...
run;
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Normalized Power Prior is Similar to a0 = 0.1
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Applications Power Prior: Kociba Case Study

Selection of a0

On one hand, the normalized power prior provides an automated
approach in selecting a0.

But it is quite computationally intensive
I Numerical integral can be costly to compute, and the problem gets

worse as the dimension of the model gets to be larger.
I In addition, normalized power prior requires coding the likelihood

function at three places: MODEL statement, PRIOR statement, and in
the (integral) objective function.

I This is prone to coding errors, and can be difficult in maintaining
production code

Alternatively, grid-based search over DIC can be effective. Although
the plug-in method does not account for the uncertainty in a0, often
the difference is relatively minor.
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Evaluation of a Basket Clinical Trial Design

The goal is to evaluate the drug response and select cohorts for further
study.

A basket adaptive design enrolls patients across cohorts
Evaluate the performance at an interim analysis for each cohort to
either continue enroll, or stop for efficacy or futility

In this example, there are 10 cohorts with 80 patients, and different cohorts
have different enrollment rates. The endpoint is clinical response rate:

H0 : θ = 10% vs H1 : θ = 35%

Thanks to Frank Liu (Merck) for his help with this example.
92 / 131



Applications Evaluation of a Basket Clinical Trial Design

Hierarchical Models
A logistic random-effects model is used to fit all the cohorts patients. For
j = 1, · · · , 10:

yj ∼ binomial(nj , θj)

θj =
exp(µj)

(1 + exp(µj))

µj ∼ normal(µ, τ)

µ ∼ normal(0, prec = 0.001)

τ ∼ gamma(0.01, iscale = 0.01)

The decision criteria are

1 stop for futility if P(θj > 0.225) < 0.05
2 stop for efficacy if P(θj > 0.225) > 0.85
3 otherwise, continue enrollment (in adaptive design)
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Simulation Details

Draw number of cohort patients from a multinomial distribution with
ntotal = 80, with analysis carried out in cohorts that have nj > 5:

(n1, n2, · · · , n10) ∼ Multi(p1, p2, · · · , p10),
∑
i

pi = 1

where the allocation probabilities are set to be

p1 = · · · = p6 = 0.14, p7 = · · · = p10 = 0.04

and consider three scenarios of true response rates:

1 θj = 0.35 for all cohorts (strong alternative)
2 θj = 0.1 for all cohorts (strong null)
3 θ1 = · · · = θ4 = 0.35; θ5 = · · · = θ10 = 0.1
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Simulate Cohort Patients Data
data Alloc;

array p[10] (0.14 0.14 0.14 0.14 0.14 0.14 0.04 0.04 0.04 0.04); ! Multinomial probability vector
array theta[3, 10] (0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35, ! three true response rates

0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10,
0.35 0.35 0.35 0.35 0.10 0.10 0.10 0.10 0.10 0.10);

array n[10]; array y[10];
call streaminit(12467);
do RespRate = 1 to 3; ! Do-loop over three scenarios

do Rep = 1 to 5000; ! 5000 Repeats
do i = 1 to 10; n[i] = 0; end;
do i = 1 to 80; ! Draw Multinomial Samples, ntotal=80

j = rand("table", of p[*]); ! The table RNG draws an index
n[j]+1; ! Increase count of according to that index
end;

do i = 1 to 10;
y[i] = .;
if (n[i] > 5) then ! Only draw y if the number of patients is greater than 5

y[i] = rand("binomial", theta[RespRate, i], n[i]); ! Draw Responses according to θ
end;

output;
end;

end;
drop p: w theta: i j;
run;

The RespRate and Rep variables become the BY variables.
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Simulated Data Set

n y r
n n n n n n n n n 1 y y y y y y y y y 1 R e
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 R p

13 17 15 12 11 8 1 1 1 1 6 8 3 2 1 4 . . . . 1 1
11 13 9 17 11 9 3 2 2 3 4 8 3 6 6 4 . . . . 1 2
...
4 15 11 11 19 6 2 5 3 4 . 0 0 1 1 0 . . . . 2 1
7 8 5 18 12 11 4 8 3 4 0 3 . 2 1 1 . 1 . . 2 2

...
11 11 7 12 18 14 1 2 2 2 4 5 3 3 1 3 . . . . 3 1
14 16 13 8 10 6 3 4 4 2 4 4 4 3 2 2 . . . . 3 2
...

Note that y = 0 is different from y=missing (.). Simulation should include
observations with y = 0 (groups with enough enrollment) but not y = .
(groups don’t have enough enrollment, hence not part of the trial).
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Input Data Set to PROC MCMC
Resp
Rate rep k n y

1 1 1 13 6
1 1 2 17 8
1 1 3 15 3
1 1 4 12 2
1 1 5 11 1
1 1 6 8 4
1 1 7 1 .
1 1 8 1 .
1 1 9 1 .
1 1 10 1 .
1 2 1 11 4
1 2 2 13 8
1 2 3 9 3
1 2 4 17 6
1 2 5 11 6
1 2 6 9 4
1 2 7 3 .
1 2 8 2 .
1 2 9 2 .
1 2 10 3 .

...
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Fitting Hierarchical Model in PROC MCMC
Each simulated data set is fitted using a binomial random-effects model:

proc mcmc data=alloc ... missing=cc;
by RespRate Rep;
parm mu tau;
prior mu ~ normal(0, prec=0.001);
prior tau ~ gamma(shape=0.01, iscale=0.01);
random u ~ normal(mu, prec=tau) subject=k;
model y ~ binomial(n, logistic(u));
run;

The missing=cc option discard observations with missing response
(y’s). Fitting models of different sizes in each BY group.
There are a total of 3× 5000 of BY groups.
Each BY group can have potentially different number of parameters
(in random effects).
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Fit the Same Model using PROC BGLIMM

proc bglimm data=alloc outpost=out seed=720517 nmc=20000
stats=none diag=none plots=none missing=cc;
by RespRate rep;
class k;
model y/n = / dist=binomial link=logit;
random int / subject=k covprior=igamma(shape=0.01 scale=0.01);

run;

The model is the same: a binomial random-effects logistic regression
The k-level random intercepts enter the regressor linearly
The COVPRIOR= option specifies the prior for the shrinage parameter
(of the random effects)
The generate 300 million posterior samples. The rest is counting.
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The Rest is Counting
For each posterior sample of uj , you compute if logistic(u) > 0.225
(result in 0 or 1):

u p
r u u u u u u u u u _ p p p p p p p p p T

R e _ _ _ _ _ _ _ _ _ 1 T T T T T T T T T 1
R p 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

1 1 -0.286 -1.441 -0.472 -1.819 -2.489 0.124 . . . . 1 0 1 0 0 1 . . . .
1 1 -0.286 0.632 -0.472 -1.819 -3.054 0.124 . . . . 1 1 1 0 0 1 . . . .
1 1 0.472 -0.342 -0.472 -1.819 -3.054 -1.041 . . . . 1 1 1 0 0 1 . . . .
1 1 0.472 -0.342 -0.472 -2.042 -1.277 -1.041 . . . . 1 1 1 0 0 1 . . . .
1 1 -1.158 0.337 -0.472 -2.042 -1.277 -1.041 . . . . 1 1 1 0 0 1 . . . .
1 1 -0.558 0.337 -0.472 -2.042 -1.455 -0.385 . . . . 1 1 1 0 0 1 . . . .
1 1 -0.558 0.337 -0.472 -2.042 -1.455 -0.862 . . . . 1 1 1 0 0 1 . . . .
1 1 -0.558 0.337 -1.483 -2.287 -0.054 -0.862 . . . . 1 1 0 0 1 1 . . . .
1 1 -0.558 -0.105 -1.483 -2.287 -0.054 0.742 . . . . 1 1 0 0 1 1 . . . .
1 1 -0.915 -0.105 -1.483 -2.287 -0.487 -0.755 . . . . 1 1 0 0 1 1 . . . .
...
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You Monte carlo over the 20,000 zero-one indicator variables (per repeat)
to estimate the probabilities:

Resp
Rate rep pT1 pT2 pT3 pT4 pT5 pT6 pT7 pT8 pT9 pT10

1 1 0.96 0.98 0.66 0.62 0.52 0.93 . . . .
1 2 0.99 1 0.98 0.99 1 0.99 . . . .
1 3 0.95 0.99 0.99 0.91 0.97 0.99 . . . 0.91
1 4 0.93 0.93 0.81 0.82 0.72 0.83 . . . .
1 5 0.67 . 0.55 0.58 0.56 0.59 . . 0.66 .

...
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Check for Futility and Efficacy

Now we compare the posterior probabilities with the decision criteria (0.05
for futility and 0.85 for efficacy), and get another bunch of zero-one
indicator variables.

Again, average over these indicator variables (5000 repeats) get us the
estimates of the probabilities of trial reach one of the three decisions:

Early stop for futility
Early stop for Efficacy
Trial is inconclusive
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Probability Early Stopping for Futility
grp coh1 coh2 coh3 coh4 coh5 coh6 coh7 coh8 coh9 coh10
1 .0002 .0000 .0004 .0002 .0000 .0004 .0000 .0000 .0000 .0000
2 .6637 .6790 .6819 .6764 .6737 .6669 .5934 .6315 .6553 .6163
3 .0072 .0066 .0059 .0054 .0859 .0862 .0432 .0479 .0451 .0421

Probability of Early Stopping for Efficacy
grp coh1 coh2 coh3 coh4 coh5 coh6 coh7 coh8 coh9 coh10
1 .7002 .6895 .6916 .6918 .6912 .6856 .7033 .6764 .6679 .6190
2 .0002 .0004 .0008 .0004 .0002 .0002 .0000 .0000 .0000 .0020
3 .3336 .3258 .3286 .3275 .0258 .0247 .0247 .0077 .0132 .0165

Probability of Trial is Inconclusive:
grp coh1 coh2 coh3 coh4 coh5 coh6 coh7 coh8 coh9 coh10
1 .2974 .3105 .3076 .3080 .3092 .3132 .2986 .3198 .3283 .3810
2 .3373 .3196 .3156 .3240 .3244 .3321 .3860 .3566 .3527 .3796
3 .6625 .6709 .6652 .6651 .8859 .8922 .9300 .9387 .9380 .9304
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Adaptive Randomization

Algorithm for AR Design
I Step 1. Early Loser: If the probability that treatment arm k is the

best falls below some prespecified probability pL, i.e., if

P(θk > θj 6=k |Data) < pL,

then arm k is declared a loser and suspended. Normally, we take
pL ≤ 0.10.

I Step 2. Early Winner: If the probability that treatment arm k is the
best exceeds some prespecified probability pU , i.e., if

P(θk > θj 6=k |Data) > pU ,

then arm k is declared the winner and the trial is stopped early. We
typically take pU fairly large. In a two-arm trial we would take
pU = 1− pL.
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Adaptive Randomization

Step 3. Final winner: If, after all patients have been evaluated, the
probability that treatment arm k is best exceeds some prespecified
probability, p∗U , i.e., if

P(θk > θj 6=k |Data) > p∗U ,

then arm k is declared the winner. If no treatment arm can meet this
criterion, the AR program does not make a final selection. One
typically sets p∗U < pU (say, between 0.70 and 0.90) to increase the
chance of obtaining a final winner.
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Adaptive Randomization

Step 4. Futility: If the probability that treatment arm k is better
than some prespecified minimally tolerable response rate, θmin, falls
below some prespecified probability p∗L, i.e., if

P(θk > θmin|Data) < p∗L,

then arm k is declared futile and will not accrue more patients. This
rule applies only in efficacy trials. We take p∗L ≤ 0.10, Once an arm is
declared futile, it cannot be re-activated.
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Adaptive Randomization

As each new patient enters the trial, the randomization probability is
updated. Assuming a trial with m arms, the probability of arm k being
assigned next is

P(θk = maxjθj |Data)c∑m
i=1 P(θi = maxjθj |Data)c

,

where c ≥ 0.
c = 0 corresponds to equal randomization. Typically, c is chosen to be
some significant fraction of the sample size, such as c = n/2N, where
N is the maximum number of patients and n is the number of
currently enrolled patients.
In general, values of c near 1 and no bigger than 2 are recommended.

This can’t be done using BY group and one must write a macro do-loop to
carry out the simulation.
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Outline

1 Software Overview
PROC MCMC
PROC BGLIMM

2 Applications
Power Prior: Kociba Case Study
Evaluation of a Basket Clinical Trial Design
Internal Release Limits
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Internal Release Limits

drug stability: the
capacity of a drug to
remain within limits
before expiry date
(shelf-life)
Internal Release Limits:
a window which
guarantees with a defined
level of confidence that a
batch remains within
specifications throughout
its shelf-life

lower specification limit (LSL)

upper specification limit (USL)

stability time

C
Q

A

Shelf-life

upper IRL

lower IRL

Thanks to Laurent Natalis (PharmaLex) for the data and help with this example.
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Data
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You Want to Get
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where the blue bars are the lower and upper IRLs.
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What are Internal Release Limits
From a modeling perspective, we want to find an interval,
(IRLlower , IRLupper ), such that, when the initial measurement (at time 0,
yt=0) falls within this interval, then

Pr({yt=1, · · · , yt=SL} ∈ (LL,UL)) > 95%

If we consider a monotone linear model (with negative slope), it is
sufficient to find the interval based on the last measurement point:

Pr(yt=SL ∈ (LL,UL)) > 95%

Because we don’t know what the true value is at t = 0 (measurement
errors), we find the interval based on both end points:

Pr({yt=0, yt=SL} ∈ (LL,UL)) > 95%
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Applications Internal Release Limits

Steps in Estimating IRLs

1 Fit a model to the data (random intercept/random slope model in this
case)

2 Compute predictive distributions at different time points (blue band)
3 Probability of Success (PoS) curve

I Estimate the joint (predictive) distribution of yt=0 and yt=SL

I Compute the Probability of Success (PoS) of yt=SL ∈ [LL,UL], given
different values of yt=0, estimate a curve

4 Estimate (IRLlower , IRLupper )
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Part of the Data Set

Batch TIME LEVEL

V2_0 12 99.411
V2_0 24 98.464
V2_0 6 100.210
V2_1 12 97.785
V2_1 18 98.142
V2_1 3 98.442
V2_1 6 98.850
V2_1 9 97.625
V2_2 6 99.656
...

There are 11 batches and 50 observations (unbalanced).
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Step 1: Random-Effects Model

Random intercept and random slope model:

yij ∼ N(µij , σ
2
y )

µij = γ0,j + γt,j · TIMEij

γ0,j ∼ N(β0, σ
2
γ0

)

γt,j ∼ N(βt , σ
2
γt )

σ2
y , σ

2
γ0
, σ2

γt ∼ half-Cauchy

β0, βt ∼ N(0, 106)

where i and j represent the i-th measurement in the j-th batch.
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Fitting Random-Effects Model using PROC MCMC

proc mcmc data=irl nmc=10000 nbi=1000 seed=107561
outpost=irlOut alg=nuts;

parm b0 bT;
parms s2g0 s2gT s2y / slice;
prior b: ~ n(0, sd=1e6);
prior s2: ~ cauchy(0, 1, lower=0);
random g0 ~ n(0, var=s2g0) subject=batch;
random gT ~ n(0, var=s2gT) subject=batch;
mu = b0 + bt * time + g0 + gT * time;
model level ~ normal(mu, var=s2y);
run;

The posterior mean estimate of βt is negative, an overall declining slope.
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Step 2: Posterior Prediction

The posterior predictive distribution is the distribution of unobserved
observations (prediction), conditional on the observed data.

π(ypred|y) =

∫
π(ypred,θ|y)dθ

=

∫
π(ypred|θ, y)π(θ|y)dθ

=

∫
π(ypred|θ)π(θ|y)dθ

where θ = {β,γ}, fixed and random effects.

This distribution does not depend on parameters - all uncertainties are
integrated out, including those from the random effects.
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Step 2: Posterior Prediction

We want to make predictions on a hypothetical new batch over different
time points.

For every time point (TIME=36, for example), you use the posterior
samples (OUTPOST= data set, k = 1, · · · , 10000) to draw the random
effects and the predicted values:

1 draw γ0,k ∼ N(β0,k , σ
2
γ0,k

)

2 draw γt.k ∼ N(βt,k , σ
2
γt ,k

)

3 compute over all mean: µ = γ0,k + γt,k · TIME

4 draw yk ∼ N(µ, σ2
y ,k)

Repeat the process for all time points.
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SAS Code Drawing from Posterior Predictive Distribution

/* set up a fine grid */
data pred;

do time = 0 to 36 by 0.1;
output;
end;

run;

/* count the length */
data _null_;

set pred nobs=nobs;
call symputx('n', nobs);
stop;

run;

data irlPred;
set irlOut; /* posterior samples */
array newY[&n];
call streaminit(112071);
do j = 1 to &n;

set pred point=j; /* pred data set */
g0 = rand("normal", b0, sqrt(s2g0));
gT = rand("normal", bt, sqrt(s2gT));
muY = g0 + gT * time;
newY[j] = rand("normal", muY, sqrt(s2y));
end;

output;
keep newY:;

run;

You can use the PREDDIST statement in PROC MCMC to do posterior
prediction.
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Prediction Band
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Some Observations

The prediction band is highly sensitive to the prior choice on shrinkage
parameter (σ2

γt ).

I Possibly an indication that there is not enough information in this data
set to estimate that variance.

I There are three levels of variability here: σ2
y , σ2

γ0
, and σ2

γt
. Can be just

one too many.

You can also consider using a truncated prior on βt :

βt ∼ N(0, 106) · I(βt<0)

which ensures a negative slope.

Specification using PROC MCMC:

prior bT ~ n(0, sd=1e6, upper=0);

Not much impact on the posterior distribution in this example.
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Step 3: Estimate PoS Curve
Next we want to estimate Probability of Success (PoS):
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Step 3: Estimate PoS Curve

(1) Suppose that a true
value at time 0 is z .

(1a) draw y0k ∼ N(0, σ2
yk

),
an "observed" value
conditional on a posterior
sample.

(1b) predict ySLk , in or out
of [LL, UL]

Repeat (1a/1b) using all
posterior samples to get
Pr(y0, ySL ∈ [LL,UL]).

Repeat this process over a
grid values of z .
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You get the following scatter plot of z vs PoS:
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Fit a spline to get a curve
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Find the intercept points with the 95% line
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You get IRLlower and IRLupper .
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End Result
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SAS Program
data oz;

call streaminit(10701);
do z = &ll to &ul by 0.1; /* loop over a find grid */

PoS = 0;
do i = 1 to nobs;

set irlOut nobs=nobs point=i; /* OUTPOST= data set */
y_0 = rand("normal", z, sqrt(s2y));
mn = y_0 + rand("normal", bt, sqrt(s2gt)) * 36;
y_SL = rand("normal", mn, sqrt(s2y));
success = (y_0 < &UL and y_0 > &LL) and

(y_dSL < &UL and y_dSL > &LL);
PoS = PoS + success/nobs;
end;

output;
end;

stop;
keep z PoS;

run;
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You can use PROC SGPLOT to fit a spline to the data:

proc sgplot noautolegend data=oz;
ods output sgplot=sg;
pbspline y=PoS x=z / nomarkers maxpoints=5000;

run;

The rest of the program is fairly straightforward.
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Thoughts on Prediction
The model used here is a simple random-effects model.

Technically, the observed values at y0 do not impact the distribution of y
at TIME=DL – they are conditionally independent.

The prediction replaces the random intercept mean (β0) with the value of
y0:

yij ∼ N(µij , σ
2
y )

µij = γ0,j + γt,j · TIMEij

γ0,j ∼ N(β0, σ
2
γ0)

At TIME=0, y0 is a reasonable value to use as a plug in for β0:

y_0 = rand("normal", z, sqrt(s2y));
mn = y_0 + rand("normal", bt, sqrt(s2gt)) * 36;
y_SL = rand("normal", mn, sqrt(s2y));

This gives a "pseudo-"conditional prediction model for y at TIME=SL.
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Alternatives

An alternative is to fit a repeated measurements model, which models y0
and any yt jointly.

The data are unbalanced:

y0 y3 y6 y9 y12 y18 y24 y36 Batch

100.02 . 100.21 . 99.41 . 98.46 . V2_0
98.50 98.44 98.85 97.62 97.78 98.14 97.09 96.87 V2_1

100.33 . 100.05 . 99.99 . 98.60 . V2_10
99.60 . 99.65 . 99.14 . 99.44 96.76 V2_2

...

While you can use PROC MCMC to fit this type of data, it is much easier
to do so with PROC BGLIMM.
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Unbalanced Repeated Measurements Model in PROC
BGLIMM

proc bglimm data=irl;
class time batch;
model level = / noint;
random int / subject = batch;
repeated int /subject = time type=un;

run;

Random intercept model (11 batches) with repeats in time (8 time points).
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Finishing Thoughts

These development represents part of SAS’ continuing effort to add
Bayesian capability to the software.

We are interested in
I establishing knowledge base and providing how-tos to our users who

are interested in Bayesian design and clinical trials
I identifying key areas where we can make improvements and

enhancements to our procedures, e.g. PROC MCMC, PROC BGLIMM,
etc

Give it a try in SAS University Edition, which is free to anyone who
wishes to learn

I Base SAS, SAS/STAT, SAS/IML, and part of SAS/ETS
I Most recent release
I www.sas.com/en_us/software/university-edition.html
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