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Sample Size Determination (Part I)

• Sample size determination is critical in designing medical studies

• Failure to consider sample size calculations prior to a study can have severe
consequences:

– Studies may lack power to detect clinically important effects

– An unnecessary number of subjects may be enrolled

• E.g., the study GUSTO III with over 15,000 patients has been found under-powered
to assess non-inferiority

• There are a variety of approaches to sample size determination:

– Adcock (1997): provides an comprehensive review of various approaches

– Inoue, Berry and Parmigiani (2005): a general framework that connects the
classical and Bayesian perspectives

KOL-DIA-BSWG Webinar 3 August 24, 2018

Sujit K. Ghosh

A safety study: Rosuvastatin therapy

• Avis et al.(2010) reported a clinical trial to determine the efficacy of rosuvastatin
therapy for lowering cholesterol in children with familial hypercholesterolemia

• The treatment with a 20mg dose of rosuvastatin was found effective in lowering
cholesterol (against placebo)

• However, the study was not powered on the secondary safety endpoints (e.g.,
adverse effects of 20mg of rosuvastatin)

• Suppose we want to conduct follow-up studies to assess the safety of rosuvastatin in
children

• Avis et al. (2010) reported that 54% and 55% of children experienced adverse events
in the placebo and rosuvastatin group

• Can we use the results of this previous study (as prior knowledge) to determine
sample sizes?
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• Consider the problem of comparing event rates of two groups based on dichotomous
data

• θ0: true (unknown) event rate of control group
θ1: true (unknown) event rate of experimental group

• The goal is to compare the hypotheses:

H0 : θ0 = θ1 vs. H1 : θ0 �= θ1

• Qn.: How many subjects should we sample from each group to make a decision?

• Often the target is to control two errors:

– Type I error rate below α (e.g., 0.05)

– Type II error rate below β (e.g., 0.20)
or equivalently the power above 1− β (e.g., 0.80)

• For simplicity, assume n1 = n2 = n subjects would be sampled
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• Classical (frequentist) solution:

n ≥

(
Zα

√
2θ(1− θ̄) + Zβ

√
θ0 (1− θ0) + θ1 (1− θ1)

)2

(θ1 − θ0)
2 (1)

where θ̄ = (θ0 + θ1) /2 and Zα denotes the 1− α percentile of a standard normal
distribution (e.g., Z0.05 = 1.645)

• Some obvious but critical issues:

– n depends on posited values for the parameters of interest !!

– What happens to above solution in (1) if indeedH0 were true?

– No uncertainty about the posited values are accommodated

– Pivot quantities not guaranteed to exist (Adcock, 1997)

– Normal approximations may be questionable (M’Lan, 2008)

– Wouldn’t large sample based approximations lead to large sample?
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Limitations of Classical Methods

• Calculation of a Type-II error rate often requires the user to posit a value for the
parameter under the alternative

• Positing suitable values under a given hypothesis becomes more difficult when the
null hypothesis is composite

• Sample size calculations under the classical framework are often based on a pivot
quantity

• However, the existence of a pivot quantity is not guaranteed, even in common settings

• Nuisance parameters may be involved in a composite hypothesis

• Elimination via conditioning statistic or estimate of nuisance parameters can rarely be
done in practice
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Bayesian Approaches

• Consider the general set-up of a Bayesian model:

X|θ ∼ f(x|θ) and θ ∼ π(θ) where θ ∈ Θ and x ∈ X

• f(x|θ): joint density of the vector of observationsX given θ

• π(θ): prior density of the vector of parameters θ

• Our goal is to compare: H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1

where Θ0 ∩Θ1 = ∅ and Θ0 ∪Θ1 ⊆ Θ

• Example: ifXj|θj ∼ Bin(nj, θj) for j = 0, 1, we haveX = (X1, X2) and
θ = (θ0, θ1) ∈ Θ = [0, 1]2 ≡ [0, 1]× [0, 1]

• H0 : θ0 = θ1 ⇒ Θ0 = {θ0 = θ1 : θ ∈ [0, 1]2} and
H1 : θ0 �= θ1 ⇒ Θ1 = {θ0 �= θ1 : θ ∈ [0, 1]2}
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• We assume: Prπ[θ ∈ Θj ] =
∫
Θj

π(θ) dθ > 0 for j = 0, 1

• In other words, apriori we shouldn’t rule out the possibility of any of the hypotheses

• Otherwise, no amount of data can test the validity of a hypothesis if a positive
probability is not assigned to that hypothesis

• Notice that if we use the usual conjugate prior θj ∼ Beta(aj, bj) for j = 0, 1, the
condition Pr[θ ∈ Θ0] = Pr[θ1 = θ0] > 0 is violated!

• Instead we could use the following (conjugate) prior:

π(θ) = uI (θ0 = θ1 = η) p(a0,b0)(η) + (1− u)I (θ0 �= θ1) p(a1,b1)(θ0)p(a2,b2)(θ1)

where u = Pr(θ1 = θ2) and p(a,b)(θ) denotes a Beta(a, b) density

• In above, we can use any other continuous distribution replacing Beta(a, b)

• However, if we are comparingH0 : θ0 ≤ θ1 vs. H1 : θ0 > θ1, then we can use the
usual conjugate prior distributions

KOL-DIA-BSWG Webinar 9 August 24, 2018

Sujit K. Ghosh

• Thus prior distributions should be chosen carefully based on the hypotheses being
tested (making sure hypotheses are not ruled out apriori)

• In general, one may choose prior distributions satisfying the following condition:
Pr[θ ∈ Θ0] ≈ Pr[θ ∈ Θ1] ≈ 0.5

• In the previous example choosing u = 0.5 guarantees the above requirement
Pr[θ ∈ Θ0] = Pr[θ ∈ Θ1] = 0.5

• In other words, apriori we are not be overly biased in favor of one of the hypotheses
(being tested)

• Notice that relatively non-informative priors can be used that also simultaneously
satisfy above prior unbiasedness requirement

• E.g., in the previous example of testingH0 : θ0 = θ1, we can choose to use
Beta(0.5, 0.5) (Jeffrey’s prior) or the flat Beta(1, 1) prior by choosing
a0 = b0 = a1 = b1 = a2 = b2 = 0.5 or = 1
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Bayesian Average Errors for Hypotheses Tests

• Within a frequentist framework, hypotheses are tested by carefully controlling the
familiar Type I & II errors

• Regulatory purposes and various scientific considerations often necessitates the
control of such error probabilities

• Bayesian sample size determination methods are often criticized as not being able to
control the error probabilities for testing hypotheses

• This aspect has remained a stumbling block against the automatic adoption of
Bayesian methods in clinical trials

• So, can we built Bayesian methods that allow controlling such error probabilities?

• More fundamentally, how do we define similar error probabilities when parameters
are random (with assigned prior distributions)?
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• T (X): a “test statistic” measuring the evidence favoring the alternative hypothesis

• Decision rule: Reject the null hypothesis (in favor of the alternative) if T (X) > t for
some cut-off value t

• How would we choose the cut-off value t?

• Consider Bayesian Average Error (AE) rates:
AE1(t) = Pr[T (X) > t|θ ∈ Θ0] and AE2(t) = Pr[T (X) ≤ t|θ ∈ Θ1]

• Above error rates are to be distinguished from the classical errors

• The conditional probability Pr[T (X) > t|θ ∈ Θj ] is well defined only when
Pr[θ ∈ Θj ] > 0 for j = 0, 1

• The quantity (1− AE2(t)) may be considered as the average power of the test

• Notice that AEj(t) does not require the user to posit a value of parameters under
both (null and alternative) hypotheses
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• The calculation of AEj(t) is straightforward even when there are nuisance
parameters in the composite hypotheses

• Given a prior θ ∼ π(θ) and sampling modelX|θ ∼ f(x|θ), we can compute
Bayesian average Type I error probability:

AE1(t) = Pr[T (X) > t|θ ∈ Θ0] =
Pr[T (X) > t, θ ∈ Θ0]

Pr[θ ∈ Θ0]

=

∫
T (x)>t

∫
Θ0

f(x|θ)π(θ) dθ dx∫
Θ0

π(θ) dθ
=

∫
T (x)>t

m0(x) dx

wherem0(x) =
∫
Θ0

f(x|θ)π(θ) dθ
∫
Θ0

π(θ) dθ
denotes the marginal distribution of the data under

the null hypothesis

• Thus, we no longer need to obtain a pivot quantity or conditioning statistic to
eliminate nuisance parameters

• However, we do need to compute above (possibly high dimensional) integrals
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• Thus, in practice we will often need to employ numerical integration methods (e.g.,
MCMC methods) to compute both types of Bayesian Average Errors

• Moreover, such computations need to be done in an efficient manner so that we can
compute AEj(t) for any given t ∈ R

• Notice that AE1(t) ≤ supθ∈Θ0
Prθ[T (X) > t] for any t ∈ R

• In above, the bound is precisely the frequentist level of significance that is controlled
to be below a prescribed value (e.g. ≤ 0.05)

• Note that AE1(t) = Prm0
[T (X) > t] is a non-increasing function in t while

AE2(t) = Prm1
[T (X) ≤ t] is a non-decreasing function

• Thus, as the cut-off t is altered, there is a trade-off between these two Bayesian
average error rates

• Hence, we can find a cutoff t that bounds either AE1 or AE2 or a weighted average
of these Bayesian average errors
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• A reasonable approach is to choose a cutoff t that allows for both error rates to be
controlled simultaneously

• Hence, consider a Total Weighted Error (TWE) criterion:

TWE(t, w) = wAE1(t) + (1− w)AE2(t)

where w ∈ [0, 1] is specified a priori

• The weight w can be used to place more emphasis on controlling one type of error
over the other

• Given a value of w ∈ [0, 1], the optimal cutoff t0(w) is defined as:

t0(w) = argmin
t

TWE(t, w)

• Thus the decision rule becomes: RejectH0 if T (X) > t0(w)

• How do we compute t0(w)? How do we find the “optimal” T (X)?
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Bayes Factor as Test Statistic

• Consider the Bayes Factor in favor of the alternativeH1:

BF (X) =

(
Pr(θ ∈ Θ1|X)

Pr(θ ∈ Θ0|X)

)
/

(
Pr(θ ∈ Θ1)

Pr(θ ∈ Θ0)

)

• Test statistic: T (X) = logBF (X)

• It is well-known that T (x) = logm1(x)− logm0(x) wheremj(x) denotes the
marginal density under hypothesisHj for j = 0, 1

• Recall that

mj(x) =

∫
Θj

f(x|θ)π(θ) dθ∫
Θj

π(θ) dθ
for j = 0, 1

• Thus T (X) > 0 would favorH1. Is 0 a good cutoff value?
Why should we use Bayes Factor (BF) as a test statistics?
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It turns out that BF is indeed optimal among all test functions in the following sense:

Theorem 1. (Reyes and Ghosh, 2011) Consider testing the hypothesis as described

previously. Let BF(X) denote the Bayes factor and let

ϕ(X) : X → [0, 1]

represent a randomized test for the hypothesis. Then, for a given value of w ∈ (0, 1),

ϕ̂(X) minimizes TWE(t, w) where

ϕ̂(X) = I

(
BF (X) >

w

1− w

)
.

Implications:

• T (X) = log(BF (X)) is optimal among all test functions

• t0(w) = log w
1−w

(universally!)
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Bayesian Sample Size Determination

• The goal of any test is to control the two errors AE1 and AE2

• Given α, β ∈ (0, 1), we usually take a two-step approach:

– Bound AE1 ≤ α by finding a cutoff value t

– Obtain n such that AE2 ≤ β

• Alternatively, we can also use a single step approach:

Given a w ∈ (0, 1), obtain the minimum n such that

TE(t0(w)) ≤ α + β

where TE(t) = AE1(t) + AE2(t) denotes the Total Error (TE)

• Notice that TE(t) = 2 TWE(t, 0.5)

• Hence, w = 0.5 provides the smallest sample size
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• For a fixed total error bound (e.g., TE ≤ α + β), the weight that will produce the
smallest sample size is w = 0.5

• If Pr(θ ∈ Θ0) ≈ Pr(θ ∈ Θ1) then w = 0.5 is equivalent to rejecting the nullH0

when Pr(θ ∈ Θ0|X) < Pr(θ ∈ Θ1|X)

• Choosing w = 0.5 seems a good rule of thumb if there is no strongly preferred
bound on AE1 or AE2

• What if the goal is to control AE1 below α?

Theorem 2. (Osman and Ghosh, 2011) Consider testing the hypothesis as described
previously. Let T (X) = logBF (X) denote the test statistic with cutoff
t0(w) = log(w/(1− w)) for a given w ∈ (0, 1). There exists w0 ∈ (0, 1) such that
for any w > w0, we have,

AE1(t0(w)) ≤ TWE(t0(w), w) ≤ 1− w

Implication: If we want AE1 ≤ α then choose w = 1− α
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Numerical Illustrations

Consider again comparing two binomial proportions:

Xj|θj ∼ Bin(nj, θj) for j = 0, 1

Want to compare: H0 : θ0 = θ1 vs. H1 : θ0 �= θ1

Prior distributions:

• UnderH0: Assume θ0 = θ1 = η ∼ Beta(a0, b0) w.p. u

• UnderH1: Assume θj ∼ Beta(aj+1, bj+1) for j = 0, 1 w.p. 1− u

In other words, if θ = (θ0, θ1), we have

π(θ) = uI (θ0 = θ1 = η) p(a0,b0)(η) + (1− u)I (θ0 �= θ1) p(a1,b1)(θ0)p(a2,b2)(θ1)

We set u = 0.5 and TE ≤ 0.25 for all calculations
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Prior Parameters Results

a0 b0 a1 b1 a2 b2 w n AE1 AE2

1 1 1 1 1 1 0.99 285 0.0001 0.2498

1 1 1 1 1 1 0.95 202 0.0011 0.2482

1 1 1 1 1 1 0.90 172 0.0028 0.2467

1 1 1 1 1 1 0.50 111 0.0429 0.2065

1 1 1 1 1 1 0.10 827 0.2018 0.0479

Recall that a0 = b0 = 1 correspond to U(0, 1) prior on η underH0 and a1 = b1 = a2 = b2 = 1 correspond

U(0, 1) priors on θ0 and θ1 underH1

Notice that for this example w = 0.5 not only provides smallest sample size of 111 but it also ensures AE1 ≈ 0.05

and AE2 ≈ 0.2 as desired by regulatory agencies

KOL-DIA-BSWG Webinar 23 August 24, 2018

Sujit K. Ghosh

Prior Parameters Results

a0 b0 a1 b1 a2 b2 w n AE1 AE2

1 1 15/16 5/16 5/16 15/16 0.99 52 0.0001 0.2485

1 1 15/16 5/16 5/16 15/16 0.95 37 0.0012 0.2487

1 1 15/16 5/16 5/16 15/16 0.90 32 0.0028 0.2452

1 1 15/16 5/16 5/16 15/16 0.50 20 0.0554 0.1916

1 1 15/16 5/16 5/16 15/16 0.10 136 0.2019 0.0472

Recall that a0 = b0 = 1 correspond to U(0, 1) prior on η underH0 and a1 = b2 = 15/16 and

b1 = a2 = 5/16 correspond to highly skewed priors on θ0 and θ1 underH1

Here again for this casew = 0.5 not only provides smallest sample size of 20 but it also ensuresAE1 ≈ 0.05 and

AE2 ≈ 0.2

In fact, we can choose w to ensure AE1 ≤ 0.05 as closely as possible and AE2 ≤ 0.2 as closely as possible
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A Comparison with classical methods:

d = θ1 − θ0

0 0.1 0.2 0.3 0.4 0.5

nc ∞ 392 97 43 24 15

nw=0.9 172 159 127 87 54 32

nw=0.5 111 103 82 56 35 20

nw=0.1 827 762 603 404 240 136

Recall that the classical sample size formula:

nc =

(
Zα

√
2θ(1− θ̄) + Zβ

√
θ0 (1− θ0) + θ1 (1− θ1)

)2

(θ1 − θ0)
2

We have used α = 0.05 and β = 0.20
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Back to Rosuvastatin Therapy

• Using the Avis et al. (2010) study, we chooses the following prior parameters

(1) UnderH0: η ∼ Beta with mean 0.545 & variance 0.125

(2) UnderH1: θ0(θ1) ∼ Beta with mean 0.54 (0.55) with a variance of 0.125 for the
placebo (rosuvastatin) group

• We set u = 0.5 and TWE ≤ α + β = 0.15

• Using w = 0.5, required sample size is n = 243 subjects for each treatment arm,
yielding an AE1 = 0.021 and AE2 = 0.129

• Reyes and Ghosh (2011) presents results based on a second study to determine if
the treatment impairs renal function

• The change in Glomerular Filtration Rate (GFR) from baseline through 12 weeks of
treatment is considered as the response
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R package: BAEssd

Download the R package from CRAN site:
https://cran.r-project.org/web/packages/BAEssd/

#install the package

> install.packages(’BAEssd’)

#load the package after installation

> library(BAEssd)

#generate suite of function by specifying prior

> fn=binom2.2sided(prob=0.5,a0=1,b0=1,a1=1,b1=1,a2=1,b2=1)

#attach the suite

> attach(fn)

#compure log(BF) for a given data

> logbf(n=30,x=c(12,22))

[1] 2.170515
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#compute the log marginal densities

> logm(n=30,x=c(12,22))

$logm0

[1] -9.03849

$logm1

[1] -6.867974

$logm

[1] -7.453058

> ssd.binom(alpha=0.25,w=0.5,logm=logm,two.sample=TRUE)

Bayesian Average Error Sample Size Determination

Call: ssd.binom(alpha = 0.25, w = 0.5, logm = logm, two.sample = TRUE)

Sample Size: 111

Total Average Error: 0.2494102

Acceptable sample size determined!

> ssd.binom(alpha=0.25,w=0.95,logm=logm,two.sample=TRUE)
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Bayesian Average Error Sample Size Determination

Call: ssd.binom(alpha = 0.25, w = 0.95, logm = logm, two.sample = TRUE)

Sample Size: 202

Total Average Error: 0.2493688

Acceptable sample size determined!

> ssd.binom(alpha=0.2,w=0.5,logm=logm,two.sample=TRUE)

Bayesian Average Error Sample Size Determination

Call: ssd.binom(alpha = 0.2, w = 0.5, logm = logm, two.sample = TRUE)

Sample Size: 192

Total Average Error: 0.1998955

Acceptable sample size determined!
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END OF PART I

THANKS!
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Non-inferiority Tests (Part II)

• Selecting an appropriate control group is a very important step in many medical
studies

• A placebo group is the most ideal candidate for the control

• However, use of placebo may be infeasible due to ethical concerns (should we assign

patients with life-threatening disease to placebo?)

• Sometimes a placebo control is just impossible due to the nature of some treatment
(e.g., device implant or surgery)

• Hence, an active control is used to compare against the experimental treatment

• Generally, the best available treatment is selected as the active control (e.g., to avoid
“biocreep”)
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• Establishing superiority of a new treatment over the active control usually turns out to
be a difficult task

• Instead, it may be acceptable to show the experimental treatment is not inferior to the
standard treatment by some small margin

• There are two crucial issues:

– What dissimilarity metric should we use to compare the treatment effects?

– How would we choose the (“small”) margin given a dissimilarity metric?

• In this talk we do not address the above issues!

• But check out the previous KOL lecture (03/16/2018) by another ‘Ghosh’!!

• We provide methodologies for a general dissimilarity metric and a given margin

• Finally, we discuss only the case of comparing two independent populations with
binary end points
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• Consider a two-arm study:

Active control Experimental

#Events X1 X2

#Subjects n1 n2

• Assume thatXj ∼ Bin(nj, θj) for j = 1, 2

• Non-inferiority tests involve comparing hypotheses:

H0 : θ2 − θ1 ≤ −δ vs. H1 : θ2 − θ1 > −δ

H0 : θ2 ≤ ρθ1 vs. H1 : θ2 > ρθ1

H0 :
θ2

1− θ2
≤ η

θ1
1− θ1

vs. H1 :
θ2

1− θ2
> η

θ1
1− θ1

• All three dissimilarity metrics (i.e., absolute difference, relative risk and odds ratio)
have both advantages and disadvantages
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• In above, the margins (i.e., δ, ρ and η) are chosen suitably

• All of the above three hypotheses can be expressed as:

H0 : θ2 ≤ g(θ1, ρ) vs. H1 : θ2 > g(θ1, ρ)

where g(θ1, ρ) is continuous (often increasing) function of θ1 and ρ is
pre-determined margin

• Following previous notations, let θ = (θ1, θ2) ∈ Θ = [0, 1]2

• The hypotheses can equivalently be expressed as

H0 : θ ∈ Θ0 = {θ ∈ Θ : θ2 ≤ g(θ1, ρ)}

vs.

H1 : θ ∈ Θ1 = {θ ∈ Θ : θ2 > g(θ1, ρ)}

• What prior distribution(s) should we be using for this study?

• Can we find a flexible prior that are not biased toward Hj ’s?
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In other words, we would like Pr[θ ∈ Θ0] ≈ Pr[θ ∈ Θ1]

• Both parametric and semi-parametric methods are available

• Parametric (conjugate) priors (Osman and Ghosh, 2010):

Assume that θj ∼ Beta(a(ρ), a(ρ)) for j = 1, 2 where a(ρ) is determined as
follows:

ã(ρ) = arg min
a∈[0,1]

|Pr[θ2 ≤ g(θ1, ρ)|a(ρ) = a]− 0.5|

• The probability Pr[θ2 ≤ g(θ1, ρ)] can be computed efficiently using (very fast)
numerical integrations

• Once the prior Beta(ã, ã) is determined for a given value of ρ, the posterior
becomes

θ1|x1 ∼ Beta(ã+ x1, ã+ n1 − x1) and

θ2|x2 ∼ Beta(ã+ x2, ã+ n2 − x2). (2)
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• Hence, Bayes factor based tests can be easily performed for any dissimilarity metric
(g(·, ρ)) and associated margin (ρ)

• Sample size determination can thus be performed easily as well

• Notice that for any ρ, the prior parameter ã(ρ) ≤ 1 and hence the priors are not
informative

• Also, for any ρ, by the construction of ã(ρ) we have Pr[θ ∈ Θ0] ≈ Pr[θ ∈ Θ1]

• Notice that no Monte Carlo (MC) simulation based methods are needed for this
general approach

• How robust is this method against the prior specifications?

• Can we relax the assumption of Beta distributions?

• But...not necessarily at the cost of computing inefficiencies

• Recall that sample size determination could be computationally intensive if the
inference is based on MC methods
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Semi-parametric Priors

• Assume that θj ∼ πj(·) for j = 1, 2 where πj(·) is a continuous density on [0, 1]

• Bernstein-Weierstrass Approximation:
m∑
i=0

π

(
i

m

)(
m

i

)
θi(1− θ)m−i → π(θ) uniformly as m → ∞

if π(·) is a continuous function on [0, 1]

• Thus, a mixture of Beta priors of the form Beta(i+ 1,m− i+ 1) for
i = 0, 1, . . . ,m can approximate any arbitrary continuous prior density on [0, 1]

• How would we select the mixing weights and number of components?

KOL-DIA-BSWG Webinar 37 August 24, 2018

Sujit K. Ghosh

• Next we assume that for a suitably chosenm,

θ1 ∼
m∑
i=0

w1ifb(θ1; i+ 1,m− i+ 1)

θ2 ∼
m∑
i=0

w2ifb(θ2; i+ 1,m− i+ 1)

where fb(θ; a, b) denotes the density of Beta(a, b) distribution

• The weights must satisfy the constraint:

wji ≥ 0 and
m∑
i=0

wji = 1 for j = 1, 2

• Once the weights are determined, the above mixture is also a conjugate prior for this
problem

• Hence it is enough to obtain methodologies for computing the prior probabilities
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• It can be shown that the probability of null can be expressed as:

Pr[θ ∈ Θ0] = Pr[θ2 ≤ g(θ1, ρ)] = w
T
1Aw2

wherewT
1 = (w10, w11, . . . , w1m) andwT

2 = (w20, w21, . . . , w2m)

• The (m+ 1)× (m+ 1) matrixA can be computed using (very efficient) numerical
integrations (Osman and Ghosh, 2011)

• For simplicity we can assumew1 = w2 = w and obtain thew solving the following
optimization problem:

ŵ = argmin |wT
Aw − 0.5| subj to w ≥ 0,wT

1 = 1

• We also use an additional constraint: wi = wm−i for i = 0, 1, . . .

• Thus, ŵ can be obtained by quadratic programming

• The resulting semi-parametric prior then satisfies: Pr[θ ∈ Θ0] ≈ Pr[θ ∈ Θ1]

(for any arbitrarym, g(·, ρ) and ρ!)
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• The posterior density can be computed analytically (as mixture of Beta’s is still
conjugate)

• Hence, the posterior probability of the null hypothesis is:

Pr[(θ1, θ2) ∈ Θ0|X1 = x1, X2 = x2] = w1

∗THw2

∗,

wherew∗
j = (w∗

j0, w
∗
j1, . . . , w

∗
jm)

T and w∗
ji ∝ wji

m+1
m+nj+1

(nj
xj
)(mi )

(m+n
xj+i)

• The elements ofH = H(x1, x2) is given by

hpq(ρ) =

∫ 1

0

[Fβ(g(θ1, ρ);x2 + q,m+ n2 − x2 − q + 2)]fβ(θ1;x1 + p,m+ n1 − x1 − p+ 2)dθ1

• And, finally the BF can be computed analytically as well!

BF (x1, x2) =
w1

∗THw2
∗

1−w1
∗THw2

∗
·
1−w1

TAw2

w1
TAw2

≈
w1

∗THw2
∗

1−w1
∗THw2

∗

when the priors are balanced, i.e.,w1
TAw2 ≈ 0.5
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Numerical Illustrations

• We first illustrate simulated data scenarios:
X1|θ1 ∼ Bin(n1, θ1) andX2|θ2 ∼ Bin(n2, θ2)

• True values:
Control group: θ1 ∈ {0.3, 0.5, 0.8}, and
Experimental group: θ2 = η + g(ρ, θ1)

where g(ρ, θ1) = ρθ1
1+ρθ1−θ1

and η ∈ [−0.2, 0.2] (with 0.01 increment)

• Thus, η < 0 favour theH0, while positive values favourH1

• Sample sizes: n = n1 = n2 ∈ {10, 20, 30, 50}

• Non-inferiority margin: ρ = (odds(θ0)/odds(θ1))
ε where θ0 = θ1/2 and ε = 0.2

(see Ng, 2008)

• Compared against Blackwelder type test with 104 replicates
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α = 0.05
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α = 0.10
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Streptococcal Pharyngitis Trial

• Patients with documented group A beta–haemolytic streptococcal pharyngitis were
randomized to:

– 500 mg twice daily erythromycin (standard treatment)

– 250 mg twice daily clarithromycin (experimental treatment)

• The scientific question of interest:
Is clarithromycin non-inferior to erythromycin in efficacy?

• The study patients are selected to 65 or younger from a single-center, unblinded,
phase IV trial

• X1 = 97 out of n1 = 107 patients in the erythromycin group were observed to have
symptoms cured or improved

• X2 = 98 out of n2 = 106 patients in the clarithromycin group were successfully
treated
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• Following Wellek (2003) and Siqueira et al. (2008), we carried out the following tests:

H0 :
θ2(1− θ1)

θ1(1− θ2)
≤ ρ vs. Ha :

θ2(1− θ1)

θ1(1− θ2)
> ρ

θ1: the success rate for patients receiving erythromycin
θ2: the success rate for the clarithromycin group

• The noninferiority margin ρ = 0.5 and the size of test α = 0.025

• Used TWE with w = 1− α (so that AE1 ≤ α) andm = 20

• log[BF ] = 3.218 with cutoff value (minimizing TWE) t0 = 3.664

• Accordingly, we failed to reject the null hypothesis, hence noninferiority can not be

claimed for clarithromycin

• These results are consistent with the ones obtained by the frequentist methods
(e.g., p-value= 0.029 based on the Blackwelder-type test)
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Sensitivity with respect to the choice ofm:
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R package: BayesNI

Download the package from CRAN site:
https://cran.r-project.org/web/packages/BayesNI/

> install.packages("BayesNI")

> library(BayesNI)

> help.start()

> bayesNI(x1=97,x2=98,n1=107,n2=106,dm=’OR’,rho=0.5,m=20,

zeta=0.025,TWE=1)

H0:odds(theta2)/odds(theta1)<= 0.5 vs. H1:odds(theta2)/odds(theta1)>0.5

weight assignment in TWE: 0.975 Type I Error | 0.025 Type II error

logBF(x1,x2)= 3.2181 L0= 3.6635

$logBF

[,1]

[1,] 3.218111
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$L0

[1] 3.663562

$w1

[1] 3.47e-01 0.00e+00 -2.11e-18 0.00e+00 2.20e-02

[6] 9.23e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00

[11] 7.63e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00

[16] 9.24e-02 2.21e-02 0.00e+00 -2.12e-18 0.00e+00

[21] 3.47e-01

$w2

[1] 3.47e-01 0.00e+00 -2.11e-18 0.00e+00 2.20e-02

[6] 9.23e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00

[11] 7.63e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00

[16] 9.24e-02 2.21e-02 0.00e+00 -2.12e-18 0.00e+00

[21] 3.47e-01
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> bayesNI(x1=97,x2=98,n1=107,n2=106,dm=’OR’,rho=0.5,m=10,

zeta=0.025,TWE=1)

H0:odds(theta2)/odds(theta1)<=0.5 vs. H1:odds(theta2)/odds(theta1)>0.5

weight assignment in TWE: 0.975 Type I Error | 0.025 Type II error

logBF(x1,x2)= 3.26787 L0= 3.6636

> bayesNI(x1=97,x2=98,n1=107,n2=106,dm=’RD’,rho=0.05,m=10,

zeta=0.025,TWE=1)

H0: theta2<=theta1- 0.05 vs. H1: theta2>theta1- 0.05

weight assignment in TWE: 0.975 Type I Error | 0.025 Type II error

logBF(x1,x2)= 2.9540 L0= 3.6636

> bayesNI(x1=97,x2=98,n1=107,n2=106,dm=’RR’,rho=0.95,m=10,

zeta=0.025,TWE=1)

H0: theta2/theta1<= 0.95 vs. H1: theta2/theta1> 0.95

weight assignment in TWE: 0.975 Type I Error | 0.025 Type II error

logBF(x1,x2)= 2.8545 L0= 3.6636
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THE END

of PART I & II

THANKS!

For questions and collaborations contact me at
sujit.ghosh@ncsu.edu
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