NC STATE LINIVERSITY Sujit K. Ghosh

Bayesian Sample Size Determination Methods for

Hypotheses Testing

Sujit K. Ghosh
NC State University gﬁl

DEPARTMENT OF STATISTICS

https://www.stat.ncsu.edu/people/ghosh/

Presented at:

KOL Lecture Series Webinar
The DIA Bayesian Scientific Working Group
http://www.bayesianscientific.org/kol-lecture-series/

KOL-DIA-BSWG Webinar 1 August 24, 2018

NC STATE LINIVERSITY Sujit K. Ghosh

Outline I

e Sample size determination (Part I)

— Limitations of Classical Methods
— Bayesian Average Errors

— Bayes Factor as Test Statistic

— Numerical lllustrations

— R package: BAEssd

e Bayesian Non-inferiority tests (Part Il)
— Semi-parametric priors
— Numerical lllustrations

— R package: BayesNI

KOL-DIA-BSWG Webinar 2 August 24, 2018




pp— Q THME AND m -
NC STATE UNIVERSITY Sujit K. Ghosh THE EXTRACRDINARY

Sample Size Determination (Part I) I

e Sample size determination is critical in designing medical studies

e Failure to consider sample size calculations prior to a study can have severe
consequences:

— Studies may lack power to detect clinically important effects
— An unnecessary number of subjects may be enrolled
e E.g., the study GUSTO Il with over 15,000 patients has been found under-powered
to assess non-inferiority
e There are a variety of approaches to sample size determination:
— Adcock (1997): provides an comprehensive review of various approaches

— Inoue, Berry and Parmigiani (2005): a general framework that connects the
classical and Bayesian perspectives
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A safety study: Rosuvastatin therapy

e Avis et al.(2010) reported a clinical trial to determine the efficacy of rosuvastatin
therapy for lowering cholesterol in children with familial hypercholesterolemia

e The treatment with a 20mg dose of rosuvastatin was found effective in lowering
cholesterol (against placebo)

e However, the study was not powered on the secondary safety endpoints (e.g.,
adverse effects of 20mg of rosuvastatin)

e Suppose we want to conduct follow-up studies to assess the safety of rosuvastatin in
children

e Avis et al. (2010) reported that 54% and 55% of children experienced adverse events
in the placebo and rosuvastatin group

e Can we use the results of this previous study (as prior knowledge) to determine
sample sizes?
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e Consider the problem of comparing event rates of two groups based on dichotomous
data

e (y: true (unknown) event rate of control group

0, : true (unknown) event rate of experimental group
e The goal is to compare the hypotheses:
Hy:60y=0,vs. Hy:0y+# 0,
e Qn.: How many subjects should we sample from each group to make a decision?

e Often the target is to control two errors:

— Type | error rate below « (e.g., 0.05)

— Type Il error rate below 3 (e.g., 0.20)
or equivalently the power above 1 — 3 (e.g., 0.80)

e For simplicity, assume 1n; = ny = n subjects would be sampled
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e Classical (frequentist) solution:

(ZM/25(1 —0) + Zg\/00 (1 — Oy) + 0, (1 — 01))2

(1)
(61 — 60p)°

where ) = (0o + 01) /2 and Z,, denotes the 1 — « percentile of a standard normal
distribution (e.g., Zyo5 = 1.645)

n =

e Some obvious but critical issues:
— n depends on posited values for the parameters of interest !!
— What happens to above solution in (1) if indeed H were true?
— No uncertainty about the posited values are accommodated
— Pivot quantities not guaranteed to exist (Adcock, 1997)
— Normal approximations may be questionable (M’Lan, 2008)

— Wouldn't large sample based approximations lead to large sample?
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Limitations of Classical Methods I

e Calculation of a Type-Il error rate often requires the user to posit a value for the

parameter under the alternative

e Positing suitable values under a given hypothesis becomes more difficult when the
null hypothesis is composite

e Sample size calculations under the classical framework are often based on a pivot
quantity

e However, the existence of a pivot quantity is not guaranteed, even in common settings
e Nuisance parameters may be involved in a composite hypothesis

e Elimination via conditioning statistic or estimate of nuisance parameters can rarely be
done in practice
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‘ Bayesian Approaches I

e Consider the general set-up of a Bayesian model:
X|0 ~ f(x|0)and @ ~ 7(0) where § € © and x € X

e f(x|6): joint density of the vector of observations X given 6
e 7(0): prior density of the vector of parameters 6

e Our goal is to compare: Hy : 0 € ©gvs. H; : 0 € ©,
where@oﬂ@l :(Z)and@()U@l Q ©

e Example: if X,;|0; ~ Bin(n;,0;) for j =0, 1, we have X = (X7, X5) and
0= (60,01) € © = (0.1 = (0,1] x [0, 1]

e Hy:0p=0, = @0:{90:01196 [0,1]2}and
H1:907é91 = @1:{00#91296[0,1]2}
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e We assume: Pr.[0 € ©;] = [, 7(0) df > Oforj =0,1
J
e In other words, apriori we shouldn’t rule out the possibility of any of the hypotheses

e Otherwise, no amount of data can test the validity of a hypothesis if a positive
probability is not assigned to that hypothesis

e Notice that if we use the usual conjugate prior 6; ~ Beta(a;,b;) for j = 0, 1, the
condition Pr[0 € ©g] = Pr[f; = 0y] > 0 is violated!

e Instead we could use the following (conjugate) prior:

7(0) = ul (60 = 1 = 1) Dlagto) (1) + (1 = )L (B0 # 01) P(ar.br) (B0) Dl ) (1)
where u = Pr (6, = 02) and p(4,)(¢) denotes a Beta(a, b) density

e |n above, we can use any other continuous distribution replacing Beta(a, b)

e However, if we are comparing Hy : 0y < 61 vs. H; : 6y > 01, then we can use the
usual conjugate prior distributions
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e Thus prior distributions should be chosen carefully based on the hypotheses being
tested (making sure hypotheses are not ruled out apriori)

e In general, one may choose prior distributions satisfying the following condition:

PI‘[Q c @0] ~ PI’[Q c @1] ~ 0.5

e In the previous example choosing u = 0.5 guarantees the above requirement

Pr[f € ©¢] = Pr[0 € ©1] = 0.5

e In other words, apriori we are not be overly biased in favor of one of the hypotheses
(being tested)

e Notice that relatively non-informative priors can be used that also simultaneously
satisfy above prior unbiasedness requirement

e E.g., in the previous example of testing Hy : 0y = 1, we can choose to use
Beta(0.5, 0.5) (Jeffrey’s prior) or the flat Beta(1, 1) prior by choosing
aozbozalzbl=a2:b220.50r:1
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Bayesian Average Errors for Hypotheses Tests I

e Within a frequentist framework, hypotheses are tested by carefully controlling the

familiar Type | & Il errors

e Regulatory purposes and various scientific considerations often necessitates the
control of such error probabilities

e Bayesian sample size determination methods are often criticized as not being able to
control the error probabilities for testing hypotheses

e This aspect has remained a stumbling block against the automatic adoption of
Bayesian methods in clinical trials

e So, can we built Bayesian methods that allow controlling such error probabilities?

e More fundamentally, how do we define similar error probabilities when parameters
are random (with assigned prior distributions)?
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° T(X ): a “test statistic’ measuring the evidence favoring the alternative hypothesis

e Decision rule: Reject the null hypothesis (in favor of the alternative) if 7'(X) > ¢ for
some cut-off value ¢

e How would we choose the cut-off value ¢?

e Consider Bayesian Average Error (AE) rates:

AFE;(t) = Pr[T(X) > t|0 € Og|l and AE,(t) = Pr[T(X) < t|f € ©4]
e Above error rates are to be distinguished from the classical errors

e The conditional probability Pr[7(X) > t|¢ € ©,] is well defined only when
Prjf € ©,] > 0forj =0,1

e The quantity (1 — AF»(t)) may be considered as the average power of the test

e Notice that AEj (t) does not require the user to posit a value of parameters under
both (null and alternative) hypotheses
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e The calculation of AF;(1) is straightforward even when there are nuisance
parameters in the composite hypotheses

e Given a prior § ~ 7(6) and sampling model X | ~ f(x|6), we can compute
Bayesian average Type | error probability:

AE((t) = Pr[T(X) > t|f € ©g] = PT[T(XE > 1,60 € O

Prio € @0]
Jr@yst Jo, f :1:|(9 (0) do dx / @) d
= — mo i i
x|0)m(0) db
where mq(z) = feoff( l(z) (dt; denotes the marginal distribution of the data under
©0

the null hypothesis

e Thus, we no longer need to obtain a pivot quantity or conditioning statistic to
eliminate nuisance parameters

e However, we do need to compute above (possibly high dimensional) integrals
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e Thus, in practice we will often need to employ numerical integration methods (e.g.,
MCMC methods) to compute both types of Bayesian Average Errors

e Moreover, such computations need to be done in an efficient manner so that we can
compute AFE);(t) for any givent € R

e Notice that AE, (1) < supgeg, Pro[T(X) > t]foranyt € R

e In above, the bound is precisely the frequentist level of significance that is controlled
to be below a prescribed value (e.g. < 0.05)

e Note that AE(t) = Pr,,,,[T(X) > t] is a non-increasing function in t while
AF5(t) = Prp,, [T(X) < t] is a non-decreasing function

e Thus, as the cut-off ¢ is altered, there is a trade-off between these two Bayesian
average error rates

e Hence, we can find a cutoff ¢ that bounds either AE, or AE5 or a weighted average
of these Bayesian average errors
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e A reasonable approach is to choose a cutoff ¢ that allows for both error rates to be
controlled simultaneously

® Hence, consider a Total Weighted Error (TWE) criterion:
where w € [0, 1] is specified a priori

e The weight w can be used to place more emphasis on controlling one type of error
over the other

e Given a value of w € [0, 1], the optimal cutoff £, (w) is defined as:
to(w) = arg mtin TWE(t,w)
e Thus the decision rule becomes: Reject Hy if T'(X) > to(w)

e How do we compute £ (w)? How do we find the “optimal” T'( X )?
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Bayes Factor as Test Statistic I

e Consider the Bayes Factor in favor of the alternative H:

0= (e eam) (rivcen)

e Test statistic: 7'(X) = log BF(X)

e ltis well-known that 7'(x) = log m4(x) — log mg(x) where m;(x) denotes the
marginal density under hypothesis H; for j = 0, 1

e Recall that

f@ (x|0)m(0) db
f@j (6) d@

e Thus T'(X) > 0 would favor H;. Is 0 a good cutoff value?
Why should we use Bayes Factor (BF) as a test statistics?

mj(x) = for j =0,1
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It turns out that BF is indeed optimal among all test functions in the following sense:

Theorem 1. (Reyes and Ghosh, 2011) Consider testing the hypothesis as described
previously. Let BF(X') denote the Bayes factor and let

e(X): X —[0,1]
represent a randomized test for the hypothesis. Then, for a given value of w & (0, 1),

@ (X) minimizes TW E(t, w) where

@(X):JI(BF(X)> - >

1 —w

Implications:
e T'(X) =log(BF(X)) is optimal among all test functions

° 1y (w) log — (universally!)
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Bayesian Sample Size Determination I

e The goal of any test is to control the two errors AE; and AFE5

e Given a, 3 € (0, 1), we usually take a two-step approach:
— Bound AFE; < « by finding a cutoff value ¢
— Obtain n such that AFy <

e Alternatively, we can also use a single step approach:

Givenaw € (0, 1), obtain the minimum n such that
TE(to(w)) <a+
where TE(t) = AF,(t) + AEs(t) denotes the Total Error (TE)
e Notice that T E(t) = 2 TW E(t,0.5)

e Hence, w = 0.5 provides the smallest sample size
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e For a fixed total error bound (e.g., T'E/ < o + [3), the weight that will produce the

smallest sample size is w = 0.5

o If Pr(f € ©y) ~ Pr(f € O,) then w = 0.5 is equivalent to rejecting the null Hy
when Pr(6 € ©y|X) < Pr(f € ©,]|X)

e Choosing w = (.5 seems a good rule of thumb if there is no strongly preferred
bound on AFE; or AF),
e \What if the goal is to control AF; below a?

Theorem 2. (Osman and Ghosh, 2011) Consider testing the hypothesis as described
previously. Let T'(X') = log BF(X) denote the test statistic with cutoff

to(w) = log(w/(1 — w)) for a given w € (0, 1). There exists wy € (0, 1) such that
for any w > wq, we have,

AFE; (to(w)) < TW E(to(w),w) <1 —w

Implication: If we want AF; < o then choose w =1 — «
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Numerical lllustrations I

Consider again comparing two binomial proportions:
X;|0; ~ Bin(n;,0;)forj = 0,1
Want to compare: Hy : 0y = 601 vs. Hy : 0y # 0,
Prior distributions:
e Under Hy: Assume 0y = 01 = 1 ~ Beta(ag, by) w.p. u
e Under H;: Assume 0; ~ Beta(a;t1,bj41)forj =0,1wp. 1 —u
In other words, if = (6, 01 ), we have

ﬂ-(e) = ul (90 = (91 = 77) P(ag,bo) (77) + (1 - U)H (‘90 7& 61)p(a1,b1)(00)p(a2,bz)(91>
We setu = 0.5 and T'E < 0.25 for all calculations
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Prior Parameters Results

ao bo al b1 as ba w n AE1 AE>

1 1 1 1 1 1 0.99 285 0.0001 0.2498
1 1 1 1 1 1 0.95 202 0.0011 0.2482
1 1 1 1 1 1 0.90 172 0.0028 0.2467
1 1 1 1 1 1 0.50 111 0.0429 0.2065
1 1 1 1 1 1 0.10 827 0.2018 0.0479

Recall that ag = by = 1 correspond to U (0, 1) prior on 17 under Hy and a1 = b1 = a2 = bz = 1 correspond
U(0,1) priors on 0 and 61 under H;

Notice that for this example w = 0.5 not only provides smallest sample size of 111 but it also ensures AF; =~ 0.05

and AF> ~ 0.2 as desired by regulatory agencies
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Prior Parameters Results
ao bg al b1 as bo w n AE1 AE>

1 1 15/16 5/16 5/16 15/16 099 52 0.0001 0.2485
1 1 15/16 5/16 5/16 15/16 095 37 0.0012 0.2487
1 1 15/16 5/16 5/16 15/16 090 32 0.0028 0.2452
1 1 15/16 5/16 5/16 15/16 050 20 0.0554 0.1916
1 1 15/16 5/16 5/16 15/16 010 136 0.2019 0.0472

Recall that ap = bo = 1 correspond to U (0, 1) prior on 1) under Hy and a1 = ba = 15/16 and
b1 = a2 = 5/16 correspond to highly skewed priors on 0y and 61 under H

Here again for this case w = 0.5 not only provides smallest sample size of 20 but it also ensures AF7; ~ 0.05 and

In fact, we can choose w to ensure AFE; < 0.05 as closely as possible and AFE> < 0.2 as closely as possible
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A Comparison with classical methods:

d =01 — 0y
0O 01 02 03 04 05

Ne co 392 97 43 24 15
Nweoo 172 159 127 87 54 32
Nw—os 111 103 82 56 35 20
Nw—o1 827 762 603 404 240 136

Recall that the classical sample size formula:

(Za 20(1 — 0) + Zg\/0 (1 — bp) + 0, (1 — 91))2

2
(61 — 6o)
We have used = 0.05 and = 0.20
KOL-DIA-BSWG Webinar 25 August 24, 2018
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Back to Rosuvastatin Therapy

e Using the Avis et al. (2010) study, we chooses the following prior parameters
(1) Under Hy: n ~ Beta with mean 0.545 & variance 0.125

(2) Under Hy: 0y(601) ~ Beta with mean 0.54 (0.55) with a variance of 0.125 for the
placebo (rosuvastatin) group

e Wesetu =0.5andTWE <a+p=0.15

e Using w = 0.5, required sample size is n = 243 subjects for each treatment arm,
yielding an AE; = 0.021 and AE, = 0.129

e Reyes and Ghosh (2011) presents results based on a second study to determine if
the treatment impairs renal function

e The change in Glomerular Filtration Rate (GFR) from baseline through 12 weeks of

treatment is considered as the response
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R package: BAEssd

Download the R package from CRAN site:
https://cran.r-project.org/web/packages/BAEssd/

#install the package

> install.packages (’BAEssd’)

#load the package after installation

> library (BAEssd)

#generate suite of function by specifying prior
> fn=binom2.2sided (prob=0.5,a0=1,b0=1,al=1,bl=1,a2=1,b2=1)
#attach the suite

> attach (fn)

#compure log(BF) for a given data

> logbf (n=30,x=c(12,22))

[1] 2.170515
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#compute the log marginal densities
> logm(n=30,x=c(12,22))

$logm0

[1] -9.03849

$logml

[1] -6.867974

Slogm

[1] -7.453058

> gssd.binom(alpha=0.25,w=0.5, logm=1ogm, two.sample=TRUE)

Bayesian Average Error Sample Size Determination

Call: ssd.binom(alpha = 0.25, w = 0.5, logm = logm, two.sample = TRUE)
Sample Size: 111

Total Average Error: 0.2494102

Acceptable sample size determined!

> ssd.binom(alpha=0.25,w=0.95, logm=1logm, two.sample=TRUE)
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Bayesian Average Error Sample Size Determination

Call: ssd.binom(alpha = 0.25, w = 0.95, logm = logm, two.sample = TRUE)
Sample Size: 202

Total Average Error: 0.2493688

Acceptable sample size determined!
> ssd.binom(alpha=0.2,w=0.5, logm=1logm, two.sample=TRUE)

Bayesian Average Error Sample Size Determination

Call: ssd.binom(alpha = 0.2, w = 0.5, logm = logm, two.sample = TRUE)
Sample Size: 192

Total Average Error: 0.1998955

Acceptable sample size determined!
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END OF PART |

THANKS!
Dhanyavaad ¥<ddiq
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‘ Non-inferiority Tests (Part Il) I

e Selecting an appropriate control group is a very important step in many medical

studies
e A placebo group is the most ideal candidate for the control

e However, use of placebo may be infeasible due to ethical concerns (should we assign

patients with life-threatening disease to placebo?)

e Sometimes a placebo control is just impossible due to the nature of some treatment
(e.g., device implant or surgery)

e Hence, an active control is used to compare against the experimental treatment

e Generally, the best available treatment is selected as the active control (e.g., to avoid

“biocreep”)
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e Establishing superiority of a new treatment over the active control usually turns out to
be a difficult task

Instead, it may be acceptable to show the experimental treatment is not inferior to the

standard treatment by some small margin

There are two crucial issues:

— What dissimilarity metric should we use to compare the treatment effects?

— How would we choose the (“small”) margin given a dissimilarity metric?

In this talk we do not address the above issues!

But check out the previous KOL lecture (03/16/2018) by another ‘Ghosh’!!

We provide methodologies for a general dissimilarity metric and a given margin

Finally, we discuss only the case of comparing two independent populations with
binary end points
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e Consider a two-arm study:

Active control | Experimental

#Events Xl XQ

#Subjects ny N9

e Assume that X; ~ Bin(n;,0,;)forj = 1,2
e Non-inferiority tests involve comparing hypotheses:
Hy:00—60, < -0 vs. Hy:0,—0; > -6
Hy: 0, < pby vs. Hy:0,> pby

0 v,
2 < O vs. Hi: %2 > !
1-—6,

1-6,-"1-0, 1 — 0,
e All three dissimilarity metrics (i.e., absolute difference, relative risk and odds ratio)

HQI

have both advantages and disadvantages
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e In above, the margins (i.e., J, p and 1)) are chosen suitably

e All of the above three hypotheses can be expressed as:
HO . (92 S 9(91,,0) VS. Hl . 92 > g(@l,p)

where g(61, p) is continuous (often increasing) function of #1 and p is
pre-determined margin

e Following previous notations, let § = (61, 60,) € © = [0, 1]?
e The hypotheses can equivalently be expressed as
Hy:0€0y={0€0:0,<g(bh,p)}
VS.
Hi:0€0,={0€0:0,>g(0,p)}
e What prior distribution(s) should we be using for this study?

e Can we find a flexible prior that are not biased toward H ;'s?
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In other words, we would like Pr[f € ©¢] ~ Pr[f € ©]
e Both parametric and semi-parametric methods are available

e Parametric (conjugate) priors (Osman and Ghosh, 2010):

Assume that 0; ~ Beta(a(p),a(p)) for j = 1,2 where a(p) is determined as

follows:

a(p) = arg Jnin, | Pr[f < g(61, p)lalp) = a] — 0.5]

e The probability Pr[fs < g(61, p)] can be computed efficiently using (very fast)

numerical integrations

e Once the prior Beta(d, EL) is determined for a given value of p, the posterior

becomes
91‘[E1 ~ Beta(d—l—xl,&—l—nl —331) and
(92‘55’2 ~ B@ta(&+$2,d+n2 — 332). (2)
KOL-DIA-BSWG Webinar 35 August 24, 2018
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® Hence, Bayes factor based tests can be easily performed for any dissimilarity metric
(9(+, p)) and associated margin (p)

e Sample size determination can thus be performed easily as well

e Notice that for any p, the prior parameter d(p) < 1 and hence the priors are not
informative

e Also, for any p, by the construction of a(p) we have Pr[f € O] =~ Pr[0 € ©]

e Notice that no Monte Carlo (MC) simulation based methods are needed for this
general approach

e How robust is this method against the prior specifications?
e Can we relax the assumption of Beta distributions?
e But...not necessarily at the cost of computing inefficiencies

e Recall that sample size determination could be computationally intensive if the
inference is based on MC methods
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Semi-parametric Priors I

e Assume that 6; ~ 7;(-) for j = 1,2 where 7;(-) is a continuous density on [0, 1]

e Bernstein-Weierstrass Approximation:

S (i> (m) 0i(1— 0)™ — 7(6) uniformly as m — 00

: m i
1=0
if 7(+) is a continuous function on [0, 1]

e Thus, a mixture of Beta priors of the form Beta(i + 1,m — i + 1) for

i =20,1,...,m can approximate any arbitrary continuous prior density on [0, 1]

e How would we select the mixing weights and number of components?
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e Next we assume that for a suitably chosen m,

91 ~ thﬁ)(@l,z—l— 1,m —Z—f— ].)

i=0
m
92 ~ Z’UJQU%(@Q,Z + 1,m — 1+ ].)
i=0
where f,(0; a, b) denotes the density of Beta(a, b) distribution
e The weights must satisfy the constraint:
m
wj; > 0 and Zwﬁ =1 for 9 =1,2
i=0

e Once the weights are determined, the above mixture is also a conjugate prior for this
problem

e Hence it is enough to obtain methodologies for computing the prior probabilities
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e |t can be shown that the probability of null can be expressed as:
Pr[f € ©g] = Pr[f, < g(01, p)] = wi Aw,
where w! = (wyg, wi1, ..., W) and wl = (wy, way, . . ., Way,)

e The (m + 1) X (m + 1) matrix A can be computed using (very efficient) numerical
integrations (Osman and Ghosh, 2011)

e For simplicity we can assume w = wy = w and obtain the w solving the following
optimization problem:

w = arg min |w’ Aw — 0.5 subjtow > 0, w’1 =1
e We also use an additional constraint: w; = w,,_; fort = 0,1, ...
e Thus, W can be obtained by quadratic programming

e The resulting semi-parametric prior then satisfies: Pr[f € Oy] ~ Pr[f € O]
(for any arbitrary m, g(-, p) and p!)

KOL-DIA-BSWG Webinar 39 August 24, 2018
Q THAMK AND D0
NC STATE UMIVERSITY Sujit K. Ghosh THE EXTRADADINARY

e The posterior density can be computed analytically (as mixture of Beta’s is still
conjugate)

e Hence, the posterior probability of the null hypothesis is:

P?"[((91,92) € @Ole = ZUl,Xz = 1'2] = wl*THw2*:

* * * * \T * m+1 (Z;)<T)
FEJ 7

e The elements of H = H (1, x5) is given by

1
hpq(p) = /0 [Fs(g(01,p);22 +q,m +n2 —x2 — q+2)|fg(01;21 +p,m +n1 — 21 — p+2)do:

e And, finally the BF can be computed analytically as well!

wl*Tng* 1— w]_Tsz wl*TH’UJz*

BF — ~
(xh xZ) 1 — 'LUl*TH’UJz* wlTA'l,Uz 1 — ’wl*TH’wg*

when the priors are balanced, i.e., w1’ Aws ~ 0.5
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Numerical lllustrations

e We first illustrate simulated data scenarios:
Xﬂ@l ~ Bin(nl, 91) and X2|92 ~ B’I:TL(TLQ, 92)

e True values:

Control group: #; € {0.3,0.5,0.8}, and
Experimental group: 05 = 1 + g(p, 01)

where g(p, 01) = H;ﬁ)ﬁ andn € [—0.2,0.2] (with 0.01 increment)

e Thus, n < 0 favour the H, while positive values favour [

e Sample sizes: n = n; = ny € {10,20, 30,50}

e Non-inferiority margin: p = (odds(6y)/odds(6y))c where 8y = 01 /2 and € = 0.2

(see Ng, 2008)

e Compared against Blackwelder type test with 10* replicates
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Streptococcal Pharyngitis Trial
e Patients with documented group A beta—haemolytic streptococcal pharyngitis were
randomized to:
— 500 mg twice daily erythromycin (standard treatment)

— 250 mg twice daily clarithromycin (experimental treatment)

e The scientific question of interest:
Is clarithromycin non-inferior to erythromycin in efficacy?

e The study patients are selected to 65 or younger from a single-center, unblinded,
phase IV trial

e X; = 97 out of ny = 107 patients in the erythromycin group were observed to have

symptoms cured or improved

e X5 = 98 out of ny = 106 patients in the clarithromycin group were successfully
treated
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e Following Wellek (2003) and Siqueira et al. (2008), we carried out the following tests:

Os(1 — 0,) Os(1 — 0,)
< pvs. H,: ——= >
01—y =" 0.(1— 05)

0, : the success rate for patients receiving erythromycin

Hy

05: the success rate for the clarithromycin group
e The noninferiority margin p = 0.5 and the size of test & = 0.025
e Used TWE with w = 1 — « (so that AE; < ) and m = 20
e log[BF| = 3.218 with cutoff value (minimizing TW E)) t, = 3.664

e Accordingly, we failed to reject the null hypothesis, hence noninferiority can not be
claimed for clarithromycin

e These results are consistent with the ones obtained by the frequentist methods
(e.g., p-value= 0.029 based on the Blackwelder-type test)
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Sensitivity with respect to the choice of m:
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R package: BayesNT

Download the package from CRAN site:
https://cran.r-project.org/web/packages/BayesNI/

> install.packages ("BayesNI")

> library (BayesNI)

> help.start ()

> bayesNI (x1=97,x2=98,n1=107,n2=106,dm='0OR’ ,rho=0.5,m=20,
zeta=0.025,TWE=1)

HO:o0dds (theta2) /odds (thetal)<= 0.5 vs. Hl:odds (theta2) /odds (thetal)>0.5
weight assignment in TWE: 0.975 Type I Error | 0.025 Type II error
logBF (x1,x2)= 3.2181 LO= 3.6635

$1logBF
[,1]
[1,] 3.218111
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SLO
[1] 3.663562

Swl
[1] 3.47e-01 0.00e+00 -2.11e-18 0.00e+00 2.20e-02
[6] 9.23e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
[11] 7.63e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
[16] 9.24e-02 2.21e-02 0.00e+00 -2.12e-18 0.00e+00
[21] 3.47e-01
Sw2
[1] 3.47e-01 0.00e+00 -2.11le-18 0.00e+00 2.20e-02
[6] 9.23e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
[11] 7.63e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
[16] 9.24e-02 2.21e-02 0.00e+00 -2.12e-18 0.00e+00
[21] 3.47e-01
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> bayesNTI (x1=97,x2=98,n1=107,n2=106,dm="0OR’ ,rho=0.5,m=10,
zeta=0.025,TWE=1)

HO:o0dds (theta2) /odds (thetal)<=0.5 vs. Hl:odds (theta2)/odds (thetal)>0.5
weight assignment in TWE: 0.975 Type I Error | 0.025 Type II error
logBF (x1,x2)= 3.26787 LO0= 3.6636

> bayesNTI (x1=97,x2=98,n1=107,n2=106,dm='RD’ ,rho=0.05,m=10,
zeta=0.025, TWE=1)

HO: theta2<=thetal- 0.05 vs. Hl: theta2>thetal- 0.05

weight assignment in TWE: 0.975 Type I Error | 0.025 Type II error
logBF (x1,x2)= 2.9540 LO= 3.6636

> bayesNI (x1=97,x2=98,1n1=107,n2=106,dm='RR’ ,rho=0.95,m=10,
zeta=0.025, TWE=1)

HO: theta2/thetal<= 0.95 vs. Hl: theta2/thetal> 0.95

weight assignment in TWE: 0.975 Type I Error | 0.025 Type II error
logBF (x1,x2)= 2.8545 L0= 3.6636
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THE END
of PART | &

THANKS!
Dhanyavaad ¥<ddiq

For questions and collaborations contact me at

sujit.ghosh@ncsu.edu
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